MCR. 85-594

FINAL REPORT

CR-/g0709

SATELLITE OPERATIONS SUPPORT EXPERT SYSTEM

CONTRACT NAS 5-280})

- may 13, 1985

\

Prepared For:

NASA - Goddard Space Flight Center
Greenbelt, Maryland

SATELLITE OPERATIONS

{NASA-CR~180709)
SUPPORT EXPERT SYSTEM Final Report
91 p Avail: NTIS HC

Marietta Aerospace)
AOS/,MF AOQ%

N87~25816

{Martin

Uncl as

CSCL 12B
G3766 0082683

MARTIN MARIETTA DENVER AEROSPACE

P.0. BOX 179
DENVER, CO 80201

Section I

Section II

Section III

Section IV

Section V

Section VI

Section VII

Section VIII

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix G

o e . -

TABLE OF CONENTS

Introduction. . « « &« o« ¢ o o o o o o
Choice of the Application Domain. . . .
Requirements Analysis . ce e e e e e
Design Process. . o « o« o« o o o ¢ o o &
Implementation Experience . « ¢« « « . &
Automation. « ¢« ¢ ¢« ¢ ¢ ¢ o ¢ o s e o
ReSUltsS « ¢« o o ¢ o ¢ o ¢ o o o o o o
Conclusion. « « ¢ ¢« & ¢ ¢ ¢ ¢ ¢ ¢ o o &
Glossary of Terms « « o« o ¢ o o o o o &
Assumptions . ¢« « ¢« ¢ ¢ o ¢ ¢ o ¢ o o .
Example of a Fault Being Isolated . . .

Automation Choices for the ISEE Control

Center.

Requirements Review . « « « ¢ ¢« ¢ ¢ ¢ ¢ o o o &

Knowledge Base Documentation

Page

13

18

21

24

£

Lo LA RUDUCTLION

The Satellite Operations Support Expert System contract is an effort to
identify aspects of satellite ground support activity at Goddard Space Flight
Center (GSFC) which could profitably be automated with artificial intelligence
(AI) and to develop a feasibility demonstration for the automation of ome such
area. To accommodate the one-year contract time frame, GSFC selected the
International Sun-Earth Explorer (ISEE) control facility as the application
domain. The three ISEE satellites are relatively simple so that operatiomal
intricacies were expected to not complicate the development process. This
allowed the resultant system to illustrate the application and development of
Al technology in the satellite support environment.

The importance of considering automation in general is addressed at several
points in this document. Automation can be considered as a means for
potentially increasing the effectiveness with which a task is performed and

decreasing the long run costs. This essential cost-benefit tradeoff will be
considered later in this document.

If automation is considered, then 1t may be profitable to examine the possible

use of artificial intelligence technologies. In many instances, the decision
is quite straightforward. Many applications--though perhaps rather 7
complex--can be suitably automated with conventional hardware and software.
In cases where the task is more intricate, involves substantlal experiential,

non-textbook knowledge, or is perhaps less constrained, expert reasoning tools

from AI may prove to be appropriate.

Since the focus of this contract was on the i1llustration of AI technology and

system development, the above considerations were traded off in favor of
providing insight into the workings of expert systems. As explained in

greater detail later, we decided to use the hydrazine bropulsion subsystems
(HPS) of the International Sun-Earth Explorer (ISEE) and the International
Ultraviolet Explorer (IUE) as application domains. This was after extensive
examination of candidate applications and the realization that all of then,

save one or two at the most abstract research-oriented level, could be more

efficiently automated using conventional approaches.

-1-

We chose: to build a demonstration fault handling system for an HPS. The
system is written in Franz Lisp and is currently hosted on a VAX 11/750-11/780
family machine. As detailed in a later section, it allows the user to select
which HPS (either from ISEE or from IUE) to run the system on. The user then
chooses the fault desired for the run. The demonstration system generates
telemetry corresponding to the particular fault. The completely separate
fault handling module then uses this telemetry to determine what and where the
fault is and how to work around it, Graphics are used to depict the structure
of the HPS, and the telemetry values displayed on the screen are continually
updated. The user has the option of having each rule displayed as it is fired
and of having the system describe its actions and reasoning at each step. The
system can be used to handle up to two sequential faults to demonstrate the

fault handling process for spacecraft in degraded conditioms.

This final report describes the capabilities of this system and its
development cycle. The following sections discuss:

II - The choice of application domain

III - The process of requirements analysis
IV - The design prbcess .
V - The implementation experience

VI - Advantages of an approach to automation

VII - Results of the contract experience
VIII -~ Conclusions drawn from the experience as to the nature

and appropriateness of automation

A user's manual for the demonstration fault handling system has been prepared

under separate cover.

II. CHOICE OF THE APPLICATION DOMAIN

In the first task of this contract, we sought to identify activity areas
within the GSFC control center that could benefit from automation via
artificial intelligence (AI). We found this a difficult task: while many

areas could benefit from standard automation, few appeared intricate enough to

justify the use of AI. An important step in the analysis of possible
applications for AI techniques was the decomposition of activities within the

ISEE control center into six categories:

1) telemetry monitoring (for both experiments and spacecraft operations);
2) deciding what action to take in response to known problems;

3) deciding what action to take for novel problems;

4) ground coverage scheduling;

5) experiment scheduling; and

6) experiment management,

A detailed discussion of the automation of each of these activities is
included in Appendix D of this report. To summarize, although most activities
needed automation via conventional software, two activities appeared to be
complex enough to use AI. These were command generation and procedure
generation. The first of these is the process of identifying a set of
commands which fulfill the request of an experimenter. An experimenter might
request, for example, that a sensor be focused on a particular stellar

object. An automated command generation system would determine what needed to
be done on the spacecraft to effect the request--the spacecraft may need to be
rotated, other experiments may need to be modified or turned off, etc. The
system would then generate a series of commands that could be uplinked to the
satellite to make it do what was needed. A procedure generation system would
do the same type of processing but for spacecraft operations rather than the

onboard experiments.

Although the initial target domain was ISEE, it appeared that it would be
useful to also consider the more complex control center for IUE. After

further analysis it was concluded that for ISEE automated command generation
was easily implemented with conventional software because of the limited set

of commands available and their applicability to only one procedure. This led
to consideration of procedure gemeration for spacecraft management. Martin

Marietta personnel with experience in spacecraft support and housekeeping
systems identified a number of problems which were examined during another
on-site visit to the ISEE control center. However, it became clear that the
complexity of procedure generation was lacking in the ISEE context. The

procedures in ISEE are a set of unrelated activities to be performed at a

-3~

specific time. For comparison, procedure generation for IUE was analyzed.
The procedures in the IUE context were more complex than those in ISEE and
each procedure had a logical coherence. Unfortunately, as with ISEE, few

procedures were conceptually connected to other procedures.

If this interconnection existed, then a general body of knowledge about a
particular procedural area would be used by various logical processes to
generate a number of different procedures. This would illustrate the function
and interaction of different reasoning processes in an expert system. Since
this interconnection did not exist, a specific set of information and a
specific, different set of rules would be used to generate each procedure.
Few, if any, rules could be used in the generation of more than one

procedure. As a result, it was decided that neither command generation or
procedure generation was an appropriate activity for illustrating the various

aspects of expert systems.

As discussed in the introduction to the requirements document (see Appendix E
of this report), three additional possibilities for using expert systems
techniques emerged: 1) in executive control functions, 2) in high-level
mission workarounds, and 3) for fault handling. The first two were eventually
dismissed, partly because automation considerations in these areas should be

incorporated in the design phase of satellite system development.

Since the intent of this effort was to provide an example of artificial
intelligence approaches in the satellite control domain, it was decided that
fault handling could be a suitable application. The hydrazine propulsion
subsystem (HPS) was selected as the focus for this application for several
reasons, as discussed in the requirements document. Chief among these is that
although quite straightforward, the HPS is nonetheless one of the most complex
subsystems on ISEE. A fault handling system for an HPS could illustrate the
AI concepts of rule-based reasoning and representation while being simple

enough not to be obscured with technical minutia,

It was also noted that there exists considerable similarity between HPSs on
different spacecraft. It was reasoned that it would be relatively easy to
generalize the diagnostic process and thus be able to operate the
demonstration system on multiple HPS configurations. Although this was
desirable, it was not clear that it would be possible to build the simulation
system such that it could generate the telemetry data necessary to support
this within the scope of the contract. However, it was decided to attempt
this since it would illustrate the flexibility achievable in automated

reasoning systems.

III. REQUIREMENTS ANALYSIS

A portion of this phase was spent understanding hydrazine propulsion systems
in detail. This information is documented in Section II of Appendix E. From
this exploration, we established the set of faults which the demonstration

system would handle. These are:

Leak in the hydrazine storage tank
Leak in a section of the lime
Failure of a latch valve to open

Failure of a latch valve to close

0o o0 © o o

Fallure of an engine valve to open

(=]

Failure of an engine valve to close

Failure of a heater to turn off

o

0 . Failure of a heater to turn on

o Failure of a catalyst bed

In addition to these, we originally believed that clogged filters would be an
appropriate fault. Further exploration, however, established that there is no
way to distinguish between a completely clogged filter and a valve that is
stuck closed. Since these faults have identical symptoms, we decided to
exhibit only one, the stuck valve, for the purpose of the demonstration.

Also, we decided to include certain sensor failures as possible faults. These
are failures in engine valve and latch valve sensors (which read open or
closed), fuel pressure sensors, and fuel line and catalyst bed temperature

sensors (which read a specific numeric value).

Section III of the requirements document details the symptoms associated with
each (non-sensor) fault and the appropriate workaround. These, with the above
modifications, are the primary specifications to which the fault handling

portion of the demonstration system was built.

After the initial requirements analysis, it was decided to design more
complexity into the demonstration system. Thus, we chose to build the system
to be able to handle faults for multiple HPS configurations (within logical
limits). It was decided to have the ISEE and IUE configurations available and
to allow the user to design his own configuration as well. (For time and
simulation complexity considerations, the user configuration option was later
deleted. Although untested, the diagnostic code is in place but not the
interface I/0 code which would allow the user to make his design selectiomns.)
Further, we chose to allow the user to select multiple sequential faults,
again within logical constraints. Thus, having executed a trial run with a
particular fault, the user is then allowed to do one of three things:

1) Choose a fresh configuration (ISEE or IUE) and a fault for that
otherwise normally operating HPS;

2) Choose a second fault for the same configuration, now operating in

"degraded” mode;
3) Exit the system, finishing the demonstration run.

With the above-mentioned modifications, the system was implemented towards

meeting the intent of the requirements document with regard to the fault
handling module.

The fault handling capabilities identified above require considerable support
software. The requirements document identifies an executive control module,
an 1/0 or interface module, an internal model for representing the functional
state of the HPS, and a telemetry generation module. These are treated in
more detail in the design and implementation sections of this report and in

the design document: the original intent for these modules has.also been met.

It is appropriate to add that the telemetry generator was a requirement we had
not expected at the outset of the contract. We had anticipated using
historical tapes of actual, decommutated telemetry data from the ISEE (or IUE)
spacecraft. It proved impractical to use such tapes. First, decommutated
tapes were more difficult to access than tapes of raw data. Second, the
historical tapes have relatively few fault symptoms on them, since there have
been few significant failures on these spacecraft. Third, to use a set of
canned data could lead to suspicions of a hardwired diagnostic system.
Finally, if such data were used, it would be difficult to show the results of
- either the diagnostic actions (opening and closing valves and- firing
thrusters) or the workarounds. Unless the data were manipulated, the fault
handler would have to perform actions that correlated with the data coming
next on the tape. This would be quite unrealistic. Consequently, it was
necessary to add the unanticipated task of developing a simulation program to
generate telemetry. This turned out to be a considerable effort: the logic
for the telemetry generator is quite complex-—-more complex, in fact, than that

of the fault handler. This significantly impacted the development time,

IV. DESIGN PROCESS

This section will deal with the design process for the expert system. First,
a system overview will be presented, which will discuss the overall operation
of the system. Next, a brief description will be presented of the individual

modules including a discussion of the rationale for the decompostion selected.

System Overview

The overall flow of control through the program is directed by the executive.
After initialization of the program environment, the executive is invoked. It
calls a part of the I/0 module which queries the user for choice of propulsion
system configuration, fault type, and fault location. Choice of configuration
entails identifying a model of the propulsion system for internal use by the
demonstration system. Once the user selects a configuration, either ISEE or
IUE, the appropriate model is loaded from a file. When the fault is selected,
the system's internal model of the HPS is modified accordingly for use by the

telemetry generator.

The executive next calls the exposure module, which examines the fault
selected in the context of the configuration. The exposure module then
determines what state the propulsion system should be in to cause the fault to
influence the operation of the spacecraft. This "exposure” state is ome in
which symptoms will appear in the telemetry stream as either abnormal or
unexpected values. The exposure module identifies how the HPS should be
"commanded” (using routine actions) to move into such a state and informs the
user of what aetions, if any, will be performed. It then returns a list of

these actions to the executive.

The executive now calls upon the telemetry generator and passes to it the list
of actions received from the exposure module. The telemetry generator modifies
the internal model of the HPS to reflect the effects of these actions and
calculates the appropriate telemetry values for the new state of the HPS.

This telemetry is displayed to the user via the graphical depiction of the HPS
and examined for unexpected values by a distributed monitoring system embedded
within the telemetry gemerator module. Any abnormal or unexpected values are
reported quantitatively with respect to the telemetry and expected values
(e.g., 270 telemetry, 290 expected) and qualitatively with respect to the
difference between the telemetry and expected'values (e.g., "lower"”). These
values are incorporated into a list of symptoms which are then passed on to
the fault handling module (FHM).

The FHM concludes as much as possible from the initial symptoms available and
if it is unable to pinpoint the fault preéisely it decides what actions will
yield the necessary information to complete the isolation process. The FHM
then describes what symptoms have been noted, any deductions which it has
made, and what actions are being requested, if any. Next, the FHM returns to
the executive module the 1list of actions to be performed. Thereafter, things
proceed as they did after the exposure module returned its list of actioms.
That is, the executive passes the list of actions on to the telemetry
generator, which modifies the internal model to reflect the actions being

performed and calculates the new telemetry values. These values are screened

to identify the abnormal and unexpected readings, and the results passed on
to the FHM, and so on until the FHM has isolated the fault as precisely as

possible. The FHM then informs the user of its conclusion, identifies the
parts of the system which are unusable as a result of the fault and the
workaround, and returns a list of actions which will effect the workaround.

This list is passed to the executive and from there on to the telemetry

generator for implementation.

When the workaround has been implemented and telemetry has normalized the user
is given either two or three options, depending on the type of trial which has
just completed:

a) the user can end this session;

b) the user can run a trial on either HPS configuration, beginning from
a normal fault-free HPS; or

c) 1f the trial just completed was for the initial fault in an HPS, the
user can select another fault in the same HPS. The HPS will begin in
its current “"degraded” state, retaining the original fault and its

workaround, and then accept a second fault from the user.

In the first case, the demonstration program will terminate. 1In either of the

latter two cases, the program will perform as described above.

Design of the modules

Every large program should have a module devoted to program control and data
passing. In this case, the executive module performs this task. The executive
calls procedures which then perform their function and return results to the
executive. The executive takes these results, determines what data is needed
by the next part of the program and calls the next proéedure with the
necessary data. This data may be whatever was returned from the previous
procedure, or it may be a modified version of that data, or 1t may include

data generated earlier. The executive is responsible for knowing the needs of

the procedures which it calls and either itself modifying or having another

procedure modify the available data so that it conforms to the specifications
of the next procedure, in format as well as content. For example, the
executive calls a procedure to put the list of symptoms in a certain order

before the symptoms are made available to the FHM.

The exposure module is a module which is not absolutely essential but which
is, nonetheless, very helpful for a demonstration system. The purpose of this
module is to determine how the chosen fault can be exposed so that the system
can begin at once to perform the isolation and subsequent workaround. While
any fault chosen would eventually become noticeable if the HPS were asked to
perform random routine actions, by requesting a specific set of routine
actions the exposure module can enable immediate detection of one or more
symptoms of the fault. As soon as symptoms are noticed the true focus of this
project can occur, which is the expert system isolating the fault and then

determining a workaround.

The expert system requires input from the user at several points in the
demonstration and presents data to the user in many different ways. It was
decided, therefore, to have an I/0 module to deal specifically with this task
of system-user interfacé. The I/0 module confains several menus which are
presented to the user to determine what HPS configuratiomn, level of
explanation, display of rules and choice of fault are desired. This module
also contains the procedures used to display the HPS configuration on the
screen and to insert the updated values as they are created by the telemetry

generator.

Since the expert system will not be hooked up to actual satellite monitoring
equipment, it was necessary to simulate the telemetry which would normally be
downlinked from a satellite. This task is handled by the telemetry generator
module. The telemetry generator uses structural information about the HPS,
fault information, and knowledge of the prévious values to decide what would
be appropriate telemetry values for a given state of the HPS. This
information 1s stored in an internal model (described below) and accessed by

the telemetry generator so the new values can be computed. This module also

-10-

has a teiemetry monitor embedded within it. The telemetry monitor determines
when the telemetry differs from expectations and composes a list of these
values to be passed on as symptoms to the FHM. It could be argued that the
procedures for telemetry monitoring should be contained in a separate module.
If the expert system were using actual satellite telemetry data, then these
monitoring procedures would be in their own module. Since the telemetry data
must be simulated, however, and since the telemetry monitor uses many of the
same procedures as the telemetry generator to access values from the internal

model, these two functions were combined into a single module.

The internal model of the HPS contains information about the structure of the
current HPS model, the current fault selected by the user (and the previous
fault, if any), and the various values for each monitored attribute of the
system. The structural information deals with the number of each type of
component, and which components are above and below a given component. The
fault information reveals whether a given component has a fault associated
with it, and specifies the exact nature of the fault. Each monitored
attribute in the internal model has three values associated with it. These

values are:

o Actual value - the value used by the telemetry generator to define
the true value of the attribute being measured.

o Telemetry value - the value reported by a sensor which is supposed to
measure the attribute. This will be the same as the actual value

unless the sensor is faulty.

o Expected value - the value which should be reported by a sensor if

every part of the system which affects the attribute and the sensor
itself are functioning normally. If a fault exists which affects

either the attribute being measured or the measuring sensor, then the

telemetry value will differ from the expected value.

~11-

The fault information and the actual values are accessible only by the
telemetry generator, which needs this Information to accurately determine the
effects of a fault when generating the telemetry values. The other
information can be accessed by all modules, since such information would be
kept in an internal model even if the system didn't need an intermal model for
simulating the data from a satellite. Although maintaining two distinct
models would emphasize what Information is both needed for and available to
only the telemetry generator, it is easier to have two distinct conceptual
models which are implemented as a single model with the understanding that

most modules do not access certain data in this model.

The fault handling module (FHM) contains the code to perform the actual

isolation of the fault and determine the appropriate fault workaround. This
module consists of four major compomnents:

o The knowledge base - this consists of rules which encompass the
"expert” knowledge about the effects and symptoms of faults, common
fault isolation techniques, and appropriate fault workarounds.

o Isolation procedures - these procedures are called by rules in the
knowledge base to determine what specific actions are needed to
assist the isolation process and to compose this list of actions

which is returned from the FHM.

o Workaround procedures — these procedures are used to help determine
what actions are needed to enable the HPS to recover from the fault
as fully as possible. There is also code here which cleans up the
knowledge base after the fault is isolated. This code makes certain
that only essential knowledge is retained.

o Explanation procedures - these procedures handle the explanation
presented to the user. They are used by both of the above components
to describe what has been deduced, what actions are being requested
and why, and the final results of the isolation and workaround.

V. IMPLEMENTATION EXPERIENCE

This section describes the tools used in implementing the expert system and
the process of moving from the design to the implementation. The latter
includes a description of some of the changes from the original design made
during the implementation phase of the project and the rationale for these

changes.

The implementation tools

The entire expert system, except for the knowledge base, was written in the
programming language Franz Lisp. At this time, Lisp is the most prevalent
programming language for AI applications and Franz Lisp was chosen because it
is the Lisp dlalect residing on the GSFC VAX 11/780, which was the target
machine for the demonstration phase of this project.

The knowledge base was written in MRS, which stands for Modifiable
Representation System. MRS was used because it has rule base capabilities
which facilitate the storing and accessing of information in a partitioned
format. This ability is useful for several reasons. A rule format is good for
storing expert knowledge because such knowledge can generally be easily
expressed in statements of the form IF [one or more conditions are true] THEN
[do one or more things]. Rules are also useful because they are easily
modified or added to a knowledge base without requiring modification of the
rules already there.

MRS also allows pattern-matching of data to rules, which allows a rule to be
more general than the simple IF clause of typical programming languages.
Pattern-matching enables a rule to specify certain slots in a data item as
needing to match exactly with part of the rule and other slots to be any
value. Thus, a rule which is intended to work whenever any latch valve
reports any symptom can look for a data item which contains the component name
"1v" (for latch valve) and not worry about the component number or position of
the valve. In the HPS for ISEE, there are four latch valves, so having one
rule to check for any latch valve symptom as opposed to one rule for (lv 1
open ...), a second rule for (1v 1 closed ...), a third rule for (1v 2 opeﬁ

«+s), etc. allows one rule to do the work of eight.

-13-

Since MRS allows the rules and data to be partitioned, using it is also more
efficient than using regular Franz Lisp code for the knowledge base. The ruleé
are grouped together according to class of fault (e.g., latch valve, catalyst
bed, engine valve, etc.) and stored in the knowledge base according to these
groups. Once initial isolation is done and the expert system knows to which
group the fault belongs, it checks only the rules in that group and ignores
rules in the other groups. By diminishing the number of rules checked for
applicability, the run—-time speed of the program 1s increased.

The implementation process

Once the design of the modules was completed and the system overview
describing the flow of control between modules was done, work on the actual
implementation of the system began. This consisted of assigning the various
modules to specific programmers, with constant intercommunication so that
there wouldn't be confusion about the format or content of data passed between
modules. During this process, it became evident in some cases that a task
initially assigned to one module could be implemented more efficiently within
a different module. On these occasions the programmers involved would agree to
transfer responsibility for the task in question and any code already written

by the original programmer would also be transferred.

Changes made during implementation

As mentioned earlier, there were occasions during the implementation of the
expert system when changes from the original design were made for various
reasons. Below are examples of what was changed during the implementation of
the system and a justification of why each change was deemed necessary or

worthwhile.

Change #1: Modifying the internal model
Modifying the internal model of the HPS was originally designed into the

executive module. It was decided to have the telemetry generator perform this

task, rather than the executive, for two reasons.

-14-

First, the telemetry generator already needs access to the internal model to
produce the telemetry values. To do this, the telemetry generator has to have
complete access to the internal model, including the actual values as well as
the telemetry values (sensor readings). Since an expert system would normally
have access only to the telemetry values and not to actual values, it was
decided to minimize the number of modules which did access the actual values.
In this system, actual values are accessed only when modifying the internal
model and when. calculating the telemetry values. Therefore, it made sense to
have the telemetry generator perform any necessary modifications to the

- internal model and thus be the only module that needed to see the actual
values. Since the telemetry generator is already called whenever the model is
modified so it can calculate the new telemetry values, having it perform this
additional task required no change in the overall flow of control.

A second reason for moving this task out of the executive is that such a task
is realistically beyond the scope of an executive's responsibilities. The
executive is intended to be a high-level controlling module which passes data
and calls procedures while delegating lower-level tasks (such as the modifying
of the internal model) to the subordinate modules.

Change #2: Describing actions that the HPS performs
Describing the actions being performed by the HPS was also originally designed

as a task for the executive module. This has been changed so that it is now
done by the module responsible for requesting the action. There are two
different modules which can request actions to be performed in the HPS and

are, therefore, responsible for describing these actilons to the user.

The first of these is the exposure module. After the user specifies the
desired fault, the exposure module passes to the executive the list of actions
chosen to bring symptoms of the fault to light. Before passing this action
list, however, the exposure module informs the user of what actions will be
done. If no actions are being performed to expose the fault, as is sometimes

the case, the user is informed of this fact.

-15-

The other module that is able to request actions is the fault handling module
(FHM). This module can request various actions when it needs more data to
isolate the fault. The FHM also composes the list of actions necessary for
the fault workaround. Like the exposure module, the FHM informs the user of
the actions that will be performed before passing the action list to the

executive module.

Changing where the description of actions takes place was done for two
reasons. First, the module creating the list of actions will know exactly
what is being done and why and, therefore, can readily inform the user of
this. If the description of actions were to be done by the executive or
another module other than the one requesting the actlons, one of two things
would be necessary. Either the description would have to be composed by the
requesting module and passed along with the action list, or the module
receilving the list of actions would have to examine the list to find out what
was belng requested, and then try to figure out why those actions were being
requested. Neither of these methods are as straightforward as having the
module that requests the actions perform the description of those actionms.
Also; the latter method could entail a significant amount of computation while

still yielding an incomplete or inaccurate déscription.

The second reason for not having the executive responsible for the description
of actions was mentioned to some extent previously. The executive's job is to
receive and pass data from those procedures that actually perform the
computations. Therefore, requiring the ekecutive to know what that data is
should be unnecessary. The executive should be able to pass data among the
modules without worrying about the specifics of what it is passing. By moving
responsibility for the description of actions being performed to the
requesting modules, the executive doesn't have to examine the 1list of actions

before passing them on to the telemetry generator.

Change #3: Allowing two sequential faults

The original proposal called for the system to handle a single fault in an HPS
by isolating the fault, working around it, and then going to a new HPS. It
was subsequently decided to enhance the system by adding a multiple-fault
handling capability. The handling of two simultaneous faults was dismissed

for two reasons.

-~16—-

First, the combinatorial difficulties of allowing the faults in the HPS to be
simultaneous would greatly complicate the expert system. Two faults could
have offsetting symptoms, different combinations of faults could have the same
combinations of symptoms, and there may be no way of isolating certain

combinations of faults given the amount of information available.

Another consideration is that faults in a satellite's HPS are very rare. This
is due to the emphasis on quality construction when something is to be
launched into space, far away from the nearest serviceman. The chance of two
things going wrong simultaneously was deemed to be fairly insignificant and
the additional effort of dealing with simultaneous faults was not

justifiable. Handling two sequential faults, however, was judged to be
feasible. Knowledge of the initial isolated fault enabled the system to
reason about. how that fault might influence the symptoms of other faults, and
also allowed it to determine when it might need to use a different process for
isolation or workaround of a sequential fault. Therefore, the ability to
handle two sequential faults, while requiring more work than that necessary
for single faults, was not excessive, Also, the possibility that a second
fault might occur sometime during the entire lifespan of a satellite is high
enough to warrant consideration, as it is greater than the odds of two
simultaneous faults. Therefore, the arguments against two simultaneous faults
do not fully apply to the case of two sequential faults.

It was decided to deal with only two sequential faults, rather than some
greater number, for several reasons. First, since the HPS is assumed to be

fairly reliable, the probability of increasingly greater numbers of faults

diminishes rapidly. Conversely, the complexity required in the expert system
for handling greater numbers of faults increases rapidly. There is,

therefore, a greatly decreasing return on the effort invested in handling more
than two sequential faults. Also, the presence of three or more faults in an
HPS generally renders the HPS unusable regardless of the possible workarounds,
so attempting to handle more than two faults in the same HPS is all too often

an empty gesture.

-17-

VI. AUTOMATION

An evaluation of the Multiple Satellite Operations Control Center (MSOCC) led
to the conclusion that automation of several aspects of this center is both
feasible and highly desirable. If this automation is implemented in
conjunction with a network of computer workstations, to be used by the
center's analysts, the benefits will increase. These benefits include
increases in efficiency and reliability, as well as the solution of several
existing problems which will be detailed below.

One problem is that certain data and procedures may be stored in only one
location within the MSOCC, so they are less accessible to analysts in other
parts of the center. This locality of information, especially with procedures
for dealing with various situations, could result in analysts remote from the
procedure storage location trying to remember or guess at what to do in

situations where a particular procedure should be followed.

The standard way to attack this problem is to maintain copies of needed data,
procedures, etc., throughout the MSOCC, thereby assuring a copy will be
convenient for any analyst requiring this information. This solutionm,

however, leads to a different problem. Having multiple copies of information
scattered about makes it difficult to organize and update the information. It

does little good to have several locations where information is available, if

the information there may be incomplete, inconsistent or outdated.

A network of computer workstations distributed throughout MSOCC is recommended
because such a network would avoid both of the above problems. Having on-line
files which contain the satellite data and the policies and procedures for
dealing with common situations will result 1n easy access to this information
by any analyst who requires it. (This does not mean that access to
information can no longer be conitroiled. iL is siralghiforward Lo restrict
access to certain files according to user.) Moreover, only one primary
on~-line copy of each file of information is neede&. This simplifies the
organization and updating of the information.

Other prbblems can result from having information divided among several
different storage mediums. Information is currently found in filing cabinets,

on computer tapes, in engineering drawings, or in manuals.

One problem with this is that it requires any analyst who uses this data to be
familiar with all of the mediums used to store it. This includes familiarity
with the filing system, loading tapes, reading drawings, etc.

Another problem is that a variety of mediums tends to result in a variety of
storage formats. There is a tendency for each creator or maintainer of
information to use whatever format he or she prefers, and thus it is often
difficult for anmother amalyst to rapidly assimilate information from different
sources. The use of different storage mediums necessitates some difference in
storage formats and, therefore, it is difficult to discourage analysts from

varying the format even further to suit their preferences.

These problems are also addressed by having a network of workstations to
contain information. There would be only one storage medium used on a regular
basis——computer tapes would be used for backup purposes only and hard copies
(printouts) of the information are maintained in case of hardware problems
with the computer network. Therefore, analysts need only be familiar with the
use of the workstations. Also, having single copies of information on the
network facilitates enforcing a single storage format, so processing the
information would be faster and easier than before.

Automation of repetitive, simple tasks can enhance efficiency in two ways.
First, computers typically can perform simple tasks such as range checking
much faster than a human. Second, a computer cannot become distracted while
performing a task, so it can be relied upon to not overlook incoming data. It
is also dependable when it comes to remembering to log data and actions as

required.

-19-

There are several different types of tasks which would be suitable for
automation, especially with the use of a network of workstations. These tasks
include: telemetry monitoring, decision making in both known and novel
situations, scheduling of ground coverage and experiments, and management of
experiments. A more detailed discussion of possible automation of these tasks

can be found in Appendix D of this report.

Other uses for automation would include automatic report generators and data
formatters. These would allow rapid creation of transcripts for processing by
the analysts, facilitate the updating of databases, and allow easy generation
of procedure manuals based on actions taken in response to new situationms.
Such programs could use the results of the other automated components of the

system,

Standard automation such as telemetry monitoring would also facilitate the
introduction of more sophisticated programs, such as expert systems to perform
diagnosis or planning. This is because the output of the standard automation
is often in a format which is readily usable by an expert system. Such an

interface is helpful for two reasons.

Firét, a sophisticated user interface for input to the expert system is not
required. It is relatively simple to have a procedure perform any needed
modifications to the output of a telemetry monitor, for example, to change the
data into the input format used by an expert system that performs fault
analysis. It would would generally be more difficult to have an amnalyst who
was monitoring the data create the inputs to the expert system, since the
expert system may then have to accommodate typing errors, transposed

parameters, etc.

Another advantage to having an automated system provide inputs into an expert
system 15 that it can pass the information miuch faster than an analyst could
type it. For programs that need to operate in a real-time environment, this
is clearly a point in favor of automation. If the expert system needs to
interact with a monitoring agent (i.e., check for the presence of certain
telemetry, request changes in the scope of the monitoring), removing the
comparatively slow analyst from the chain increases the run-time speed of the

expert system even more dramatically.

-20-

VII.

Our

RESULTS

experience with constructing the demonstration fault handling system

brought a spectrum of results from an understanding of satellite operations

control center activity to an illustration of the use of artificial

intelligence languages for simulation. These will be discussed in turn.

a)

b)

c)

d)

As indicated, the detailed interaction with members of the ISEE and IUE
control centers evolved an in-depth understanding of many control center
activities. This understanding allowed us to identify different
automation épproaches for different aspects of each activity. We explored
several in detail, including procedure generation, command generation, and

scheduling, before centering on fault handling.

A recommendation emerged for an in-depth analysis of the automation of
each and all aspects of a control center. Computer Technology Associates
has generated an abstract study of this nature, and we propose, as well,
an analysis in the concrete terms of a particular control center.
Together with this recommendation, we have presented a high-level
description of one possible approach to that automation (see Section VI).
This is, in effect, a global control mechanism or strategy that would
coordinate other automated elements.

We have developed a demonstration software system to perform fault
handling on the hydrazine propulsion system of either the ISEE or IUE
spacecraft. This system runs in Franz Lisp and is presently hosted on the
VAX 11/780 and 11/750 series machines. With appropriate memory resources
and terminal configurations (a VI100 compatible terminal), it could be

hosted on other machines, including the "supermicros,” running Franz Lisp.
The demonstration system exemplifies how "production rules" can be used as
a programming language. The rules are written in the MRS tool which runs

under Franz Lisp. During a trial run of the system, the user can elect to
see the rules printed out, either in their general form with all variables

unbound or as they have matched to specific data elements in working
memory. (An annotated example of rule printing is included in Appendix C.)

-21~

e)

£)

g)

In the first of these cases, the user can obtain an appreciation for ther
generality and expressive power of a rule-—how it can be used to cover a
number of situations. In the second case, the user sees the rules in
their "instantiated" form. In this form, with all the actual data values
inserted into the appropriate places in the rules, the user can understand
how that rule is functioning in a specific situation. This aids in
following the internal logical flow of the fault handling process.

The demonstration system also illustrates the use of artificial
intelligence languages for simulation. The unanticipated requirement of
building a simulation to generate telemetry afforded us this opportunity.
While a variety of AI tools could have been used for this, we opted to
build the simulation directly in Franz Lisp. Had we been working on a
Lisp Machine, we might have chosen to implement the simulation in the
object-based language Flavors or, if we had been working in Interlisp, in
ROSS, an experimental AI language designed to build simulatiomns.
Unfortunately, the user can witness little of the inner workings of the
telemetry generation: it was designed so that only the telemetry values
that it outputs are displayed to the user.

‘The system presents the possibility of using English to describe the

system analytic process. The user has a choice of what level of
description to see. It can be turned off almost entirely, or a full
description can be presented. The system can thus depict for the user how

it is making various deductions and conclusions and describe the actioms
it is requesting.

Documentation of how this system has been developed has been generated in
the various interim reports and deliverables and in this report. This

includes:

o choice of the application domain;
o the set of faults the system would handle (this is the high-level
requirements specification for the rule-based fault handling module);

o requirements for the support system;

~22~

h)

i)

i)

o preliminary design;
0 modifications to the initial design conception; and

o implementation.

Developing the system provided an expanded understanding of development
time considerations for AI-type systems. Additions to and changes in

performance specifications complicated this issue.

The experience solidified the understanding of the importance of
development environments for AI-type systems. The facilities provided by
a Lisp Machine running, say, Zetalisp, greatly increase the ease of
understanding how a piece of code is functioning and therefore how to fix
its bugs. The facilities resident in Franz Lisp are of almost no
assistance and only in-house debugging tools aided in this process.

Further, the graphics capabilities inherent in a Lisp Machine and other
personal work stations are highly sophisticated, simple to use, and run
with minor overhead. Hosting a full-blown graphics package on a VAX for
use with a VT100 series terminal adds a significant processing load.
Using intriqate programming tricks, we were able to'provide a pleasant
graphics display with almost no overhead. We were able to do this only
because the graphics never changed: had the option of letting the user
design his own configuration been retained, it would not have been
feasible to provide a graphic display for it without using a special
graphics package with its significant associated-overhead.

We chose MRS, the Modifiable Representation System, as our inferencing
tool because it fulfilled our objective better than other reasoning tools
available -on the VAX. MRS is not a traditional production system such as
OPS5, EMYCIN or HAPS. It has a variety of powerful representation and

reasoning capabilities, including the forward chaining ability which we
used to drive our rules. Unfortunately, MRS is not designed to do forward

chaining in a way that is convenient to the system builder (a similar

statement can, regrettably, be made about other reasoning tools as well).

-23-

Thus there are, for example, cases where extra rules or extra clauses in
rules must be inserted to perform bookkeeping and cleanup actions. Under
optimal conditions, a tool of this nature would perform such activities in
a way the user would not even need to know about. A final result, then,
of this experience relates to the appropriateness of the development tools
independent of the development environment. The conclusory results are

detailed in the next section.

VIII. CONCLUSION

In the course of developing the demonstration fault handling system for this
contract, we ldentified a number of considerations about control center
automation in general. Developing this particular system entailed a detailed
examination of control center activities. It is clear from this that most of
these activities could be automated. Ideally, this automation should be
designed in as an integral aspect of the center operations during conception
and development. Retrofitting extensive automation to an existing
configuration can be expensive and inefficient. However, adding automation
need not be an intensive, disruptive process. Automation can be added
incrementally to an existing center with minimal inconvenience and
commitment., The benefits at each stage of automation would then be evaluated
to determine if further automation is justified.

More important, perhaps, is the question of what techniques should be used to
automate the different activities. Approaches run the gamut from hardware
components (e.g., sensors that control heater activity thermostatically) to
conventional software (using, e.g., decision trees in C or FORTRAN) to
artificial intelligence (using perhaps a production system or an automated
planning tool). In deciding what approach to take, it is useful to consider
that automation is important for (a) labor intensive activities and (b)

activities requiring considerabie, detailed knowiedge or expertise.

When an activity reaches a certain level of either repetition or complexity,
automation is appropriate. The level of automation should be matched to the
type and priority of the task. Most control center activities fall under (a)

above and are generally automatable by conventional technology. Those in the

-24—

second category may be potential candidates for automation using artificial
intelligence. There are a limited number of these in the existent control
centers within the MSOCC at GSFC. These include global coordination and
executive functions and situations requiring causal or deep reasoning using an
understanding of, perhaps, physics and astrodynamics. In these situations and
in the scheduling activities, however, there are political concerns which

would need to be addressed.

In any case, the tradeoff between the cost of automation and the
benefit--viewing each from both a short-term and long-term perspective--is
very important. The life expectancy of many spacecraft may not be long enough
to warrant the extensive automation of activities specific to a particular
spacecraft. Some of the processing tasks such as scheduling and fault
handling, however, are more generic, aﬁd systems to automate these could be
use& for several different spacecraft, both simultaneously and across time.

It is important as well to consider the potential for the ongoing evolution of
an automated system. It could simply be extended to do more. Alternately, it
could be a somewhat general system which, with a small effort, could be
adapted to perform the same activity in different situations. These and other
forms of evolving a system would cieate a cost factor iﬁdependent from any
ongoing maintenance. These more generic and/or evolvable activities then may
be the most appropriate place to focus an automation effort. Such a focus
would produce the greatest long-term benefit: a multi-purpose and "reusable”
automated system. Unfortunately, this leaves a dilemma: while many of the
more labor-intensive tasks (such as telemetry monitoring) are generic, the
activities requiring the greatest experience and expertise tend to be highly
spacecraft specific——for example, a causal reasoning system to troubleshoot a

particular subsystem or, even more so, a particular experiment.

Thus, the decision to automate is a complex consideration of several factors
which require close examination and careful balancing; As construction costs
for such systems come down, the cost benefit ratio will improve, especially in

the long term. Now, longevity of use is perhaps the major consideration:
over what time frame will the fixed comstruction costs plus any ongoing

maintenance costs be spread? 1Is that cost greater than the total cost would

be for human labor over the same time period if the automation were not done?

-25~

Additional risks must be considered such as the loss of a satellite for which
spacecraft-specific automation is done. (This again will be influenced by the
generality and adaptability of the automated system.) Without such

examination, inappropriate automation decisions, and hence expenditures, might
be made.

-26—

APPENDIX A

Glossary of Terms

Glossary

AI - Artificial Intelligence.

Assert - to place data in working memory. This action can result in

rules "firing" (see Fire).
Assertion - a data item which has been placed in working memory.
Catbed - Catalyst bed, see the HPS component descriptions on page A - 3.
CB - Catalyst Bed, see the HPS component descriptions on page A - 3.
EV - Engine Valve, see the HPS component descriptions on page A - 3.

Expert system - a computer program designed to "intelligently” perform
some task by utilizing the knowledge and practices of one or more

experts in the task domain.
FHM - Fault Handling Module.

Fire - term used to describe the process whereby the preconditions of a rule .

- are satisfied, causing the consequents of the rule to be executed.
GSFC - Goddard Space Flight Center.
HPS - ﬁydrazine Propusion Subsystem.
ISEE - Inte;nationa1 Sun-farth Explorer, a satellite controlled by GSFC.
IUE - International Ultraviolet Explorer, 8 satellite controlled by GSFC.

LLV - Lower Latch Valve, refers to the lower set of latch valves in IUE.

See the latch valve component description on page A - 3,

LV - Latch Valve, see the HPS component descriptions on page A - 3,

MOSES - Mission Operations Support Expert System, the demonstration
fault handling system built under this contract.

MRS - Modifiable Representation System, a multi-purpose tool for modeling
and representing knowledge. Our sSystem uses the rule-based features

of MRS to incorporate knowledge into a collection of rules.
MSOCC - Multiple Satellite Operations Control Center.

Rule - a format for encoding knowledge, usually consisting of a set of
preconditions followed by a set of actions to be performed if the

preconditions are satisfied.
TG'- tank group, see the HPS component descriptions on page A - 3,
THR - thruster, see the HPS cpmponent descriptions on page A -~ 3.

ULV - upper latch valve, refers to the upper set of latch valves in IUE.
See the latch valve component description on page A - 3,
Workaround - a set of actions designed to negate or minimize the effects

.

of a fault on the future performance of the system.

Working memory - a specific location in memory for data to be placed so

that it can be accessed by the rules as needed.

The components which compose an HPS are as follows;

o Tank groups - groups of tanks which store 1iquid hydrazine fuel on
the satellite. (See Figure A-1)

o Fuel lines - lines which carry the 1iquid hydrazine throughout the
propulsion system (see Figure A-2).

o Fuel line heaters - heaters found along most of the the fuel lines,
they prevent the liquid hydrazine from freezing inside the lines.

o Latch valves - valves which are placed in strategic locations within
an HPS. They are normally open, but can be closed to isolate sections
of fuel line during the fault isolation and workaround processes.

o Engine valves - valves which open briefly, causing fuel to flow over
a catalyst bed, and then automatically close. They are used to fire
the thrusters.

o Catalyst beds - these are very hdt beds over which the fuel is passed,
causing the liquid hydrazine to change to gas and produce a thrust.

o Thrusters - nozzles through which the ignited hydrazine gas is forced,
giving the satellite the intended thrust (see Figure A-3).

KEY TO DIAGRAMS

il - Fuel tank

i - Valve, open (usual state of latch valves)

| - Valve, closed (usual state of engine valves)

- Catalyst bed and thruster

An example of tank groups is shown below:

Tank Group #1 Tank Group #2
(1T [Z(T2 (T3 I'T'I tfns [Zite (_{r7 |_|T8
1 1iLvl |||va' 111Lv3 111Lva

Figure A-1 (Part of ISEE hydrazine propulsion system)

Even though there are eight separate tanks, there are only two functional tank
groups. Each group has four tanks which are connected via the same fuel line,
and have the same group of components directly below them. Tank Group #1
consists of (T1 T2 T3 T4) with (LV1 LV2) below and Tank Group #2 consists of
(75 T6 T7 T8) with (LV3 LV4) below.

An example of fuel 1ine is shown below:

[
| v - 1} ULv3

i
11 vt |

s | w— | w— s ®

TR 11 LLv2 1} LLv3 1] LLva
| | | l

Figure A-2 (Part of IUE hydrazine propulsion system)

A fuel line is specified by the components at either end of it. It is possible

for a section of line to have several components at either end, as seen above.

An example of the path to the thrusters is shown below:

i
I-| EV1 1-] EV2 |-| EV3
! ! !
|_] CB1 & THR1 |_] CB2 & THR2 || CB3 & THR3
/\ ™\ /\

Figure A-3 (Part of IUE hydrazine propulsion system)

When an engine valve opens, fuel flows to the catalyst bed, where it

becomes a gas, is ignited and forced out through the thruster nozzle.

APPENDIX B

Assumptions

Assumptions

The temperature outside the spacecraft is assumed to be a constant. This
avoids requiring the telemetry generation module to know when the spacecraft
is in the sun and when it is in the shade. This in turn permits it to assume
constant heat dissipation when the fuel line or catalyst bed heaters are off,
until the temperature stabilizes.

Two other assumptions concern the rate of fuel loss. It 1s assumed that

all fuel leaks are of a uniform size/rate. This allows the expert system to
assume a single constant rate of decresse in pressure when a leak 1s present.
Similarly, each firing of a thruster is assumed to use a fixed amount of fuel

from each tank group, resulting in a uniform decrease in pressure.

There are also assumptions about the location of sensors within the HPS.

The sensors are located such that all faults can be identified, yet faults
cannot be pinpointed immediately in cases such as l1ine failures. This allows
demonstration of the expert system "searching” sections of fuel line before
isolating & 1ine leak or heater fallure precisely. Below is a table containing

the locations of various sensors.

TYPE OF SENSOR LOCATIONS WITHIN THE HPS

Pressure’ One within each tank group (above the latch valves).

Temperature - fuel line | One immediately above each engine valve..

Temperature - catbed One within each catalyst bed.

Open/close position One at each latch valve and at each engine valve.

There is no redundancy in the sensor for a given component or area. Since the
expert system can identify and isolate sensor failures, redundancy in sensors

was not deemed necessary.

.

APPENDIX C

Example of a Fault Being Isolated

This is an example of the system isolating a pressure sensor fault. The fault
which has been selected is the sensor at tgl (tank group 1) reading lower than

the actual pressure.

(Although the display of the HPS is not shown, the system's explanation, the
symptoms asserted to the FHM, the actions requested from the FHM, and the
rules being fired are a1l shown. Some comments to assist the reader in
understanding the process of rules firing and the source of explanation

will be enclosed in angle brackets. "<" and ">")

No action will be performed in exposing this fault.
< This description, and the action 1ist, come from the exposure module >

< List of actions passed to telemetry generator: none >

The assertion-1ist is: ((tg 1 lower 238 300))

< This list is composed by the distributed telemetry monitor embedded within
the telemetry generator and then passed to the executive. The assertion list
is composed of a set of sublists (1n this case only one), each representing
a telemetry point whose sensor reading differs from its expected value. Here,
the sensor at tank group one reports a lower pressure than expected. The
sensor reading is 236 when it was expected to be 300. The executive asserts

each item on the assertion 1ist into the working memory of the FHM. >

The assertion being asserted now: (tg 1 lower 236 300)

< Below is the first rule that fired, >
(if (and tg |$n] |Sq] ISt] |Se])

unknown (ignore-symptom t l A
(runnable (assert-and (and (print rule p3 l n" Sq "gq)
Se "X
(tg-symptom [$n| lStI $el)))))

< Below is the binding 1ist of each variable in the rule and its value.
(variables are encased by vertical bars and contain a dollar sign "$").
By looking at the "if” portion of the rule and the preceding assertion,
the reader can see how the values for the variables were found. In this
rule, the system looked for any assertion that had five slots, and the
first slot had to be "tg". When the above assertfon was asserted (put into
working memory), the "tg" matched to the above rule, and the assertion had
five slots. When the rule was “"instantiated” (the "if"™ part matching to
the assertion), the variable [$n| was bound to the value 1, since they
were in the second slots of the rule and assertion, respectively. The
I$q] in the third slot of the rule was bound to "lower” in the third
slot of the assertion, the |$t| was similarly bound to 236, and |Se|
to 300. The second pari of the "if"™ clause means that if there is an
assertion present whose Tirst slot is "ignore-symptom™, second slot
is "tg", and last two slots are whatever [$n]| and [$q| were bound to
(in this case "1" and "lower"), then the above rule should not fire.
Since there was no such assertion present (such an assertion was "unknown")
the rule was able to fire, creating the binding 1ist shown below. >

(ISn] 1 |$Sq| lower |[$t]| 236 |Se| 300)

< Below is the next rule to fire. >
(if (and stg symptom |$n

St
unknown (faultl ;dumll 1dum2| |$dum3 | iSdum4|))
(runnable (assert-and (and (print-rule p332 |$n} "$n" "$q”
If? I;ST; "

activate-theory pressure-symptom

ginitia! describe tg ISnl |
fault pressure |$n| |$q] dummy)))))

< Below is the binding 1ist of each variable in the rule and its value.
By looking at the "if" portion of the above rule and the latter part of
the preceding rule, the reader can see how the values for the variables
were found. The preceding rule caused "(tg-symptom 1 lower 236 300)" to
be asserted into working memory (the last four slots of the 1ist containing
the values of the variables), and this assertion matched the "if" part
of the above rule, with the variables in the above rule receiving the
values of their respective slots in the assertion. >

(1Sn} 1 |$q| lower |$t]| 236 |Se| 300)

Tg: :::sgﬁp?;gﬁga:e:a:];rzzggﬁgmof 236 when 300 was expected.

< Printed as a result of "(initial-describe ...)" in the above rule. >

< Below is the next rule to fire. >
(if (and (fault pressure I$n} |$q| dummy)
continue-fc)
unknown cb |Sm| h1gher Stl 18e}))
unknown thrust $norm
(runnable (assert-and (and pr1nt-rule p334 [$n] "$n" [$q] "$q" x x x Xx Xx)
remove-one continue-fc)
describe-why-fire)
fire-random-thruster)))))
< Below is the binding 1ist of each variable in the rule and its value.
By looking at the "if" portion of the above rule and the latter part of
the preceding rule, the reader can see how the values for the variables
were found. >
(ISn| 1 |Sq| lower)
A thruster will be fired to determine whether the fault affects the
attitude adjustment. This is done to help discriminate between sensor and
physical faults.

< Printed as a8 result of "(describe-why-fire ...)" in the above rule >

thrl is now being fired.

< Printed as a result of "(fire-random-thruster ...)" in the above rule >

< List of actions passed to telemetry generator: ((evl open) (evl close)) >

The assertion-1ist is: {(thr 1 normal 100 100) (tg 1 Yower 228 290))
The assertion being asserted now: (the 1 normal 100 100)

< Below is the next rule to fire. >
(if (thr |$Sn| normal [$t]| |Se])
runnable (assert-and (and (print-rule p306 gnl "gn" |$t] St
e” x x x
describe-normal-thrust normal [$t}])
thrust normal)))))
< Below is the binding 1ist of each variable in the rule and its value.
By looking at the "if” portion of the rule and the above assertion,
the reader can see how the values for the variables were found. >

(|$n| 1 |$t| 100 |Se| 100)

There was normal thrust, as expected.

< Printed as a result of "(describe-normal-thrust ...)" in the above rule >
The assertion-Tist is: ((tg 1 lower 228 290))

The assertion being asserted now: (tg 1 lower 228 290)

< Below is the next rule that fired. >

(if (and ?tg [$n| |$ql I$t]| [Se])
unknown (ignore-symptom tg { &l
e p3 $n

(runnable (assert-and (and (print ru "$n" |$q} "$q"
$t| "$t” [Sel “"Se" x
(tg-symptom |$n] |Sq| |St] |Se])))))

< Below is the binding 1ist of each variable in the rule and its value.
By looking at the "if" portion of the rule and the above assertion,
the reader can see how the values for the variahles were found. >

(ISn] 1 |Sq| lower |$St| 228 |Se| 290)

< Below is the next rule that fired. >
(if (and (fault pressure |$n| |$q| dummy)
continue-fc)
unknown (cb ‘Sml higher |[St| {Se]))
thrust normal))
(runnable (assert-and (and (print-rule p336 |$n| "Sn”)lSqI "$q"”
XX XXX
(sensor-deduction fuel-pressure
normal
‘ pressure sensor
(pressure-sensor-fault |$n] [$ql)))))
< Below 1s the binding 1ist of each variable in the rule and its value.
By looking at the "if" portion of the above rule and the latter part of
two of the preceding rules, the reader can see how the values for the
variables were found. >
(1Sn] 1 |Sq] lower)
Since there was a fault involving the fuel-pressure and firing the thruster
resulted in normal attitude adjustment, 8 pressure sensor fault is deduced.

< Printed as a result of "(sensor-deduction ...)" in the above rule >

< Below is the next rule to fire. >
(if spressure~sensor-fault {$n] |$q|2
runnable (assert-and (and (print-rule p342 |$n]|®"$n" |$q| "$q"

XX XXX
add-another-ignore-symptom tg [$n| |[Sq])
deactivate-theory pressure-symptom?
wrap-up tg |$n] sensor-failure [$q])))))

< Below.is the binding l1ist of each variable in the rule and its value.
By looking at the "if" portion of the above rule and the latter part of
the preceding rule, the reader can see how the values for the variables
were found. >

(I1$n} 1 |Sq| lower)

< Below is the next rule that fired. >

(it (wrap-up |3Sc] |$n] ST} ISv])
runnable (assert-and (and (print-rule p303 lggl "gg" lSn "gn)
"$f" |Sv| "Sv” x
fault-describe |$ci lSn} | f| $vi])
workaround |Sc] |$n} |$T] |Sv
wait-cycles variable)
workaround-done)))))

< Below is the binding 1ist of each variable in the rule and its value.
By looking at the "if" portion of the above rule and the latter part of
the preceding rule, the reader can see how the values for the variables
were found. > |

(1$c| tg ISn] 1 |$f| sensor-failure |$Sv] lower)

The Tault isolation process has completed successfully.

The pressure sensor for tgl reads lower than the actual pressure.

< Printed as a result of "(fault-describe ...)" in the asbove rule >

This fault requires that the system note that the sensor is faulty. No other

actions are required, and the entire HPS remains usablas.

< Printed as a result of "(workaround ...)" in the above rule >

The fault workaround has beeg successful. The HPS should be able to resume

operation. .

< Printed as a result of "(workaround-done ...)" {in the above rule >

APPENDIX D

Automation Choices for the ISEE

Control Center

AUTOMATION OF THE ISEE CONTROL SYSTEM

Activities in the ISEE control center appear to decompose into six categories:
(1) telemetry monitoring (for both experiments and spacecraft operations); (2)
deciding what action to take in response to known problems; (3) deciding what
action to take for novel problems; (4) ground coverage scheduling, (5)
experiment scheduling; and (6) experiment management. The automation of these
activities will be discussed in turn.

I. TELEMETRY MONITORING

Telemetry is currently monitored by a shift analyst who stares for extended
periods at a computer display attempting to catch telemetry readings that are
out of limits or trending toward a limit condition. When he identifies such a
situation he notifies the project analyst who makes all decisions about how to
respond. The task of monitoring is tedious and mechanical. The shift analyst
knows what the telemetry value ranges should be and what their limits are. He
scans the actual values checking to see if they fall in the expected ranges.
Trend identification is only slightly more difficult, requiring that the shift
analyst remember roughly what previous values were. He can verify a trend if
he thinks one exists by quickly checking the previous values.

Both of these shift analyst tasks could be readily automated using
conventional software. Range checking would involve simply comparing each
value to its expected range-—a Fortran DO loop with a subroutine branch for
out of 1limit conditions would suffice amply. For trend analysis, each
telemetry value subject to numerical variability could have an evaluation
function looking for the kind of trend that value might exhibit. The current
value would be correlated with whatever number of previous values are required
to establish the numerical trend. Non-numerical trends would be more
difficult to identify.

These activities constitute the essence of the shift analyst's
responsibilities. The remainder appear to be typing commands that the project
analyst gives him. Consequently, the shift analyst position could probably be
completely eliminated by automation:

ITI. DECISION MAKING IN KNOWN SITUATIONS

Currently, once the shift analyst identifies a trend or out of limit
conditions, he reports it to the project analyst who decides what action to
take. In general, the decisions the project analyst makes based on telemetry
conditions appear quite simple. A single telemetry point is used to identify
a spacecraft problem or situation and a single canned procedure is used to
address it. This appears to be a very simple

D-1

If-Then situation-—a single If condition (or two or three when spacecraft
configuration must be taken into account) and a single Then consequent (e.g.,
use Proc 17 or contact experimenter X). Problem areas addressable by If-Then
rules are frequently candidates for an expert system. An expert system could
be used here but it would be pointless technically.

The rules are too simple, the reasoning chains are generally only one rule
long, and consequently there is no room for exploration of reasoning that is
not canned. The responding task could be dealt with much more efficiently
from a technical point of view by avoiding the overhead of a production system
and instead using standard software developed specifically for the application.

The main technical argument for using an expert system would be for the user
interface. A good interface for an expert system would allow dynamic
explanation traces and queries about system reasoning, old rules to be changed
and new rules to be entered. As noted above, dynamic explanation would
probably play little or no role here. In addition, rules could be manually
changed or added in a conventional software system if the interface were
properly designed. Automated generation and insertion of new rules will be
discussed below.

ITI. DECISION MAKING IN NOVEL SITUATIONS

This is perhaps the most suitable area for incorporating artificial intelli-
gence in ISEE operations. The task is currently performed by the project
analyst who draws on knowledge of spacecraft (and sometimes experiment) design
and operations, an understanding of the current configuration and orientationm,
and a knowledge of physics. When a solution is found, the project analyst
generates a command sequence to effect it. If the situation is important
enough, he will develop a canned procedure which can be used in the future to
handle such situations. The procedure is entered into the system for ready
access. In certain.cases the project analyst may have insufficient knowledge
about a particular problem or subsystem and must call in an expert. The
results of this analysis may or may not be codified in a procedure depending
on whether the problem might ever arise again.

Artificial intelligence could be used to generate new procedures and command
sequences to handle new situations. Such a Procedure Generation System (PGS)
system would incorporate the same knowledge the project analyst (or expert)
currently draws on: spacecraft design and operations, configuration,
orientation, and physics.

It would have three analytic components. The first would be diagnostic. It
would identify out of 1limit conditions and the implicated spacecraft
configuration. It would determine reachable configurations that the craft
could be safely moved to. The second would plan the sequence of changes
necessary for changiing iLv the one of those desirable configurations. The
third would instantiate this change sequence as a sequence of commands, which
could then be uplinked to effect the desired re-configuration. This final
command sequence could be codified as a procedure to be used when similar
sitvations arise in the future.

D-2

This PGS could also be used to generate all the procedures that would be used

to manage a new spacecraft., It would only need to be told which situation to
develop procedures for.

Fully automating this activity would eliminate the most interesting part of
the project analyst's job and to some extent the reliance on additional
outside experts. While this would be a significant undertaking, a
demonstration of this capability for a particular subset of spacecraft
operations would be tractable under the current contact.

IV. GROUND COVERAGE SCHEDULING

The problem of scheduling ground support coverage for the ISEE spacecraft
decomposes to at least five activities, only two of which are performed wholly
within ISEE. First the project analyst develops a seven day advance schedule
request, This is essentially canned and is derived from a generic schedule,
which is established in accordance with design and operation requirements.
Occasionally it also incorporates special requests by experimenters and any
special coverage needed by the project analysts for spacecraft operators.

This schedule request is submitted to the MSOCC schedulers who coordinate it
with schedule requests for other spacecraft controlled out of MSOCC. 1In this
coordinating, conflicts are resolved on the basis of priority, so ISEE may
lose some coverage slots that were desired. The schedule request is then sent
to NCC to be coordinated with all schedule requests handled by NCC. Coverage
slots can again be lost.

The resultant seven day advance schedule is sent to the ISEE project
analysts, If any of the specific ummet schedule requests were critical, the
analyst contacts the NCC by phone and negotiates to get coverage at the same
time, if possible, or at another time when the same objectives could be
accomplished.

The final seven day advance schedule is only modified if coverage is missing
for a critical period, another mission with higher priority enters a new
conflicting request, or an emergency arises such as experimenter calling up
with a request for coverage that he had not realized he needed.

The process of generating the seven day advance schedule involves a look-up to
get the canned generic schedule with perhaps a few minor modifications (drawn
from a small set of possible actions) by the project analyst or experimenter,
This could be automated by a short conventional software program coupled with
a simple menu driven interface for making modifications. The output could be
transmitted to the schedulers electronically or printed for hand transmission.

The second phase of ISEE activity in scheduling is negotiating both with MSOCC
schedulers and the NCC schedulers. These negotiations can get quite
complicated. For classification reasons the NCC, for example, is frequently
unable to suggest alternatives to the ISEE request. Thus the computer working
the ISEE side would be required to generate alternatives. The algorithm used
by the project analyst here seems straight-forward: identify the time
interval in which the requested coverage could happen and still allow the
desired actions to take place; then, vary the requested time within that
interval in a fairly regular way, checking at each new choice point to assure
that there is still an appropriate time slice for achieving the desired
actions. An automated system could even maintain historical data if there
were identifiable patterns of resource conflict. The bulk of this could be
handled by standard software although an expert system could be used if the
system were to do much reasoning about historical patterns. As it is
uncertain whether these patterns exist, it is not clear such reasoning would
be worthwhile,

There might be considerable resistance from the NCC side to having the ISEE
half of the negotiations automated. NCC people would then be interacting with
a computer system that had limited knowledge of the scheduling process and
could not be led by intonation or innuendo to a suitable alternative. It may,
however, hasten the automation of the NCC scheduling process after which the
computers would be negotiating between themselves.

V. EXPERIMENT SCHEDULING

Experiment scheduling on ISEE is now almost entirely rote. Some experiments
run all the time. Others are alternated in pairs-—X on one day and Y off, Y
on the next day and X off-—-due to conflict over spacecraft resources,
Occasionally an experimenter requests special time on in what would normally
be an off period. To comply, the project analyst may need to resolve any
resource conflicts, which may mean taking another experiment off line.
Clearly the rote scheduling could be automated with standard software. It
appears that the resource conflict resolution is simple enough that special
request processing could be handled with conventional software also. It would
be possible to use some artificial intelligence for the special request
processing, but the use would probably be quite trivial. The decision logic
might be something like:

Is there any countervailing condition (e.g., resource conflict)?

No: Then schedule that experiment to be turned on for the
appropriate period.

Yes: (Assuming problem is resource conflict with another experiment)

Will any critical data be lost by shutting off the conflicting
experiment?

D-4

No: Schedule conflicting experiment off and requesting experiment
on for appropriate period.

Yes: Then is the relative priority of the requesting experiment
higher than that of the conflicting experiment?

No: Refuse request

Yes: Schedule conflicting experiment off and requesting
experiment on for appropriate period.

Questions of relative priorities and crucialness of data would have to be
addressed, but these would be given to the software system to manipulate so
that it would not have to deduce them. This is in part a practical and in
part a political matter.

VI. EXPERIMENT MANAGEMENT

Management of the ISEE experiments is currently done almost entirely by the
experimenters themselves. They send the project analysts the command
sequences they want sent to their experiments. Frequently they give the
analysts these commands in their binary coded representation. Sometimes, for
the analysts convenience, they include the command acronyms so that the

analyst can verify that the commands will have not adverse effects on the
spacecraft,

For another spacecraft the problem would presumably be different. An
experimenter might give the project analyst a high level request and the
analyst would determine what commands would have to be used to accomplish it.
In any case the final command sequence is typed into the system by the shift
analyst. .
Automation could be introduced in at least two ways. The first would be to
continue allowing (and in effect requiring) the experimenter to generate his
own command sequences but allow him to type them directly into the system
(eliminating the shift analyst's task) and send them directly to the already
existing command management system (CMS) or a similar system for verification
(thereby eliminating the project analyst's task)., If the CMS were used, this
could be done simply by granting the experimenter electronic access to the
system, probably via a dial-up computer line. The problem of scheduling the
actual uplink of the commands would, of course, still have to be addressed.

A second way automation could be introduced would be to develop a full Command
Generation System (CGS). 1In this alternative the experimenter would not need
to generate his own commands. He could instead specify a high level request
such as "focus sensor A for my experiment on Alpha Piscis Austrini.” The
system would consider current sensor and satellite orientation and determine
what would have to be changed to effect the request.

D-5

For each change required to fulfill the request, the system would evaluate the
impact on both the experiment and the spacecraft as a whole., For every
adverse effect, it would see if there were any other way to accomplish the
same thing and if not, it would weigh the priority of the experiment request
against that of the affected component or activity. If the priority of the
request were not high enough, it would be denied. This type of reasoning
could be used during a high level planning of the change sequence. Once the
high level change sequence is established, it could be instantiated in a
specific command sequence.

There are two approaches to instantiating the change sequences as command
sequences for the CGS. The command sequence should be generated completely
and then set to the CMS for validation and eventually uplinked, Alternately,
the specific sequence would be generated using reasoning similar to that used
to generate the higher level change sequence., Each command step would be
evaluated as it was generated. Any problems would be identified as they arose
rather than after the entire sequence--with its compounded problems—--had been
established. This would be considerably more efficient.

A command generation system which functioned in this way would be highly

" useful: as mentioned above, it would remove the involvement of both the shift
analyst and the project amalyst. In general, such a system would need a fair
amount of knowledge about the spacecraft and its experiments.

In the case of ISEE, however, the range of things an experimenter could
request appears to be very small, e.g., changing voltage level of the
experiment or sensitivity level of the sensors between high and low, or
focusing a sensor on a new object. Thus the amount of knowledge needed by
such a system for ISEE may be fairly small. 1In any event, it appears that the
reasoning (as distinct from the knowledge) required to accomplish command
generation in general is relatively straightforward. As a result, a command
generation system for the ISEE application may be quite simple and hence
implemented as readily using conventional software as with an expert system
approach,

VII. CONCLUSION

The objective of this effort is to build a demonstration system based on the
ISEE mission operation support center activity that could be expanded towards
space station application. For a more complicated mission, either a Command
Generation System (CGS) or a Procedure Generation System (PGS) could be
considered for this end. For the first of these a knowledge base of which
requests and commands are possible given the constraint of a situation could
be implemented as rules in a production system such as HAPS. The system would
contain a model of the current spacecraft configuration and would use these

+TTA A A i

twe components to generaie command sequences to accomplish requests.

A Procedure Generation System would have the same configuration model and a
similar knowledge base containing information about handling novel situations
as well as about sequencing commands.

Other aspects and components of the systems would be relatively similar. As
an example, the man-machine interface for the CGS might allow more interaction
(since more input would come from the human), but the style of interaction
would be the same as the style of the PGS interface.

In terms of content as opposed to presentation, the PGS would address problems
of spacecraft management while the CGS would be directed at experiment
management. For suitably sophisticated missions, these problems may be
equally complex. For ISEE, however, command generation for experiment
management appears too simplistic for a real expert system and it seems that a
Procedure Generation System would make the more interesting and sophisticated
demonstration.

In addition to ISEE, we have examined the Dynamic Explorer (DE), Nimbus,
International Ultraviolet Explorer (IUE), Solar Maximum Mission (SMM), and
ERBS. ERBS proved unviable since its personnel would be heavily involved in
prelaunch activities during 1984, Most of the others had also established
rote operating procedures, A possible exception is IUE, which does more
complex experiment commanding than the other missions: a re-orientation of a
sensor frequently requires re-orientation of the spacecraft, which may make
for involved planning. i

We have identified a two-stage development process for a procedure generation
system (PGS). A PGS has two components-—a planner and a diagnostic
unit--which would be developed in separate stages. The planner would take as
inputs an initial spacecraft configuration and a final, target configuration.
It would work hierarchically, planning the sequence of changes necessary to
move from one to the other and then instantiating that change sequence in a
final output as a sequence of commands which could be uplinked. The
diagnostic unit, in contrast, would respond to undesirable states by accepting
as input the initial (undesirable) configuration. The diagnostic unit would
determine as a result of its analysis what a suitable final configuration
would be. The initial (undesirable) and final (desirable) configuration would
be given as input to the planner., During its analytic process, the diagnostic
unit would also identify a series of changes required to move from the initial
to the final safe or desired state.

These changes would probably be at a more abstract level than a change
sequence established by the planner. The hierarchical planner, however, can
use the abstract sequence of state changes from the diagnostic unit to
generate the uplinkable, executable command sequence. This makes it possible
to use the abstract change sequence (generated as output by the diagnostic
unit) as an intermediate level input to the planner. The planner would use
the abstract sequence as if the planner had generated it itself.

D-7

In summary, the two—phase development strategy is to develop the planner in
the first stage and develop the diagnostic unit later. This would provide a
demonstration system at the end of the first phase with the possibility of
extending it. The diagnostic component would be significantly more
sophisticated and may not be tractable under the scope of the present
contract. It would, however, be a highly desirable addition to the system: an
automated system for space station support would undoubtedly require such a
capability.

APPENDIX E

Requirements Review

11

IIT.

Iv,

CONTENTS

Introduction. « « « o ¢ ¢ o o ¢ W
General Introduction to Hydrazine Systems
Faults and Their Workarounds.
System Configuration. « + .

SUMMATY o & 4 ¢ « « o o o 4 8 s o e o o

I. INTRODUCTION

The Satellite Operations Support Expert System contract is an effort to
identify aspects of satellite ground support activity at Goddard Space Flight
Center (GSFC) which could profitably be automated with artificial intelligence
(AI) and to develop a feasibility demonstration fo the automation of one such
area. To accommodate the one year contract time frame, GSFC selected the
International Sun Earth Explorer (ISEE) control facility as the application
domain. The three satellites are relatively simple so that operational
intricacies will not complicate the development process. This is to allow the
resultant system to illustrate the application and development of AI
technology in the satellite support environment.

Investigation of the ISEE operations center revealed six major areas of
activities: 1) telemetry monitoring (for both experiments and spacecraft
operations), 2) deciding what action to take in response to known problems, 3)
deciding what action to take for novel problems, 4) ground coverage
scheduling, 5) experiment scheduling, and 6) experiment management. These are
discussed in detail in the documentation on application choices (the
deliverable for task one) which should be referred to for more information.

That report indicated that almost all the activities in each of the areas
could be automated using conventional software. Procedure generation and
command generation are two exceptions that were identified in that document.
When these were probed more thoroughly it became clear that both of them could
be automated in two entirely different ways. One way would use the shallow
reasoning approach of a standard rule-based system. However, the rules here
would be quite simple and there would be little if any overlap between the
rules required to generate one procedure (or command sequence) and those
required to generate another. The result would be extremely hardwired and
have very little substance. It could be achieved readily with conventional
software,. -

Another approach to automating the procedure or command generation process
would be exceedingly difficult. It would use the causal or deep reasoning
techniques in artificial intelligence and would require the most detailed,
intricate model available of the structure and function of every aspect of the
spacecraft. In addition it would have to have considerable knowledge of
physics, astrophysics, electronics and the procedure/command language. It
would have to incorporate a robust, diverse set of problem solving strategies
and methodologies. This would be, in short, a complicated project which
should be done during the design of a spacecraft: retrofitting such a system
would give relatively little benefit. The ultimate payoff of this type of
system would depend on the longevity and versatility of use of the spacecraft.

.

It is possible that AI could play a role in the executive control functions of
a fully automated control center. Had various activities such as monitoring
altering and scheduling, been automated, some form of executive control would
be required. The exact nature of this control environment is not clear. An
in-depth operations analysis is needed to determine what control can be
achieved through conventional software and what will require artificial
intelligence. This analysis will be quite involved and is not addressed under
this effort. We recommend that a thorough operations analysis be pursued. We
further suggest that any future spacecraft and control centers be designed to
incorporate all feasible automation (conventional as well as AI) to existing
systems.

AT may be able to play a role in high level mission workarounds. 1In the event
of a significant failure of some subsystem or component, it may become
impossible to achieve all spacecraft missions. Executing and scheduling of
the missions may need to be replanned in accord with the reduced resources of
the degraded spacecraft. This replanning could be accomplished by using
conventional operating systems scheduling algorithms or, perhaps, using
planning techniques developed in artificial intelligence.

The other area where artificial intelligence could be useful is in the fault

. handling (FH) arena. For some but not all subsystems, FH can pose a complex
problem. There are three approaches to FH, through only two are in general
use. The first is through hardware. Hardware is often designed to be
self-correcting: to identify failed componentry and work around it, perhaps
by switching to redundant components or systems., Likewise, on-board sensors
can be used to detect a fault which is then handled from the ground., The
weight of this hardware is an issue, however. Greater weight means greater
cost in resources for launching and controlling a vehicle, Thus, for example,
while twelve sensors might give complete information about a particular
subsystem, only four might actually be used. Whether this weight/efficiency
compromise continues in the future will depend on advances in electronics
technology for reducing the size and weight of sensors, chips and the like.
With sufficient advances, fault handling may be done predominantly in hardware
on-board: much of the capability appears to exist at this time.

The second commonly used means of fault handling is human troubleshooting from
the ground. Generally used in conjunction with on-board hardware, this can
involve the spacecraft analyst and, if the fault or subsystem is complicated
enough, an outside expert. This can result in a considerable technical
support staff for the maintenance of the spacecrafts.

Another, though apparently little used, possiblity is software automation,
This can frequently be accomplished with conventional software: some control
centers have detailed flowcharts specifying the algorithm for isolating faults
in various subsystems. In these centers fault symptoms have been thoroughly
identified. These symptoms act as cues for using one of the algorithms. A
few subsystems appear to be more complex and may merit the use of AI
technology. It must be stressed, however, that the utility of any software
automation of fault handling must be assessed in light of the possibilities
for performing the function on board in hardware.

For this contract, we have proposed developing a demonstration fault handling
system for a hydrazine propulsion system (HPS). This appears to be a rather
generic problem. Hydrazine systems are the most common monopropellant
blowdown propulsion system (MBPS) and MBPSs are one of the most common
propulsion mechanisms on spacecraft. The structure of MBPSs is quite uniform
across spacecraft. Despite their lower efficiency, hydrazine systems will be
used on future spacecraft, due to their economy and weight, and are a likely
candidate for use in space station. Finally, the HPS is one of the more

complex subsystems on ISEE and should be sufficient to illustrate some AI
concepts.

II. General Introduction to Hydrazine Systems

Introduction: Hydrazine systems are the most common monopropellant blowdown

systems in use on spacecraft today. Hydrazine systems have been used on a
number of spacecraft at Goddard Space Flight Center (GSFC), including the
International Sun Earth Explorer (ISEE). As mentioned above, further use of
hydrazine systems seems assured.

Reasons for the common use of hydrazine include:

0O 000000000

It is a storable liquid monopropellant.

It is compatible with many materials.

It is shock and friction insensitive.

It is a stable liquid (safely heated to 500°F)

It has safe, simple handling procedures.

It is an inexpensive fuel.

It is flight tested.

It can withstand long and short jet firings.

It does little or no damage to scientific equipment.

Purpose of Hydrazine Systems: The general purpose of hydrazine systems is to

perform attitude control functions. The functions performed by the hydrazine
system on, for example, IUE are:

00 0O

o O

Notation control.

Control of the precession of the spin axis.

Spin of the spacecraft.

Spacecraft torquing to acquire the proper sun angle in the event of
attitude loss. .

Velocity correction to initially acquire the orbit station.
Velocity correction for east-west station keeping (Delta-V).
Spacecraft torquing to unload reaction wheels.

Properties of Hydrazine: Some chemical and physical properties of hydrazine

are:

o 0

00 00 00

The chemical equation for hydrazine is NjH4.

Hydrazine is a colorless liquid with physical characteristics similar
to water,

Molecular weight 32.

Freezing point 34.5°F.

Boiling point 235.4°F.

Specific gravity 1.008 @ 68°F.

Vapor pressure 0.2 psia @ 68°F.

Hydrazine decomposes into hydrogen and nitrogen at high temperatures
(at slightly lower temperatures hydrazine decomposes into hydrogen,
nitrogen and ammonia NH3).

Functioning of Hydrazine Systems: Hydrazine systems function by pushing
hydrazine fuel from storage tanks down to a series of thrusters. The fuel
lines are interconnected by a series of latch valves designed to minimize the
effects of valve failures. The hydrazine fuel, when it reaches an engine,
passes over a heated catalyst bed. The hydrazine expands to form a hot gas.
This gas is expelled out the engine nozzle providing the thrust used in
performing some maneuver (see Figure 1).

Components making up a hydrazine system: The hydrazine system to be used in
the demonstration (shown in Figure 2) contains:

Eight propellant tanks,

Fill/vent valves for both groups of four tanks.
Fill/drain valves for both groups of four tanks.
Three pressure sensors,

Six fuel line filters.

Seven latch valves.

Twelve heaters.,

Twenty—four temperature sensors.

Twelve catalyst beds.

Twelve engine valves,

© 00O O0C 00 00O O

Propellant tanks: The propellant tanks store the hydrazine fuel used
throughout the life of the spacecraft. The propellant tanks are usually
grouped pairwise in order to maintain the spin balance of the craft.

There are two basic designs for the fuel tanks: 1) a bladder system and 2)
a gas propellant system, ISEE has the bladder system. In the bladder
system a thin membrane separates the hydrazine from a pressurizing gas
(usually He). The pressure in the tank is raised by filling the
pressurant side of the bladder with the pressurizing gas. The gas
propellant system works basically like a spray can. The pressurizing gas
is injected into the tank with the hydrazine fuel. The gas and the fuel
do not mix and the pressurant forces the hydrazine fuel along the sides of

the fuel tank and through a filter designed to keep the pressurant and
fuel separate.

Fill/vent valves: The fill/vent valves are used to fill and vent the
pressurant to the fuel tank. The fill/vent valve is used before the
mission to fill the fuel tank with pressurant.

Fill/drain valve: The fill/drain valves are used to fill the fuel tanks
with hydrazine before launch.

Fuel lines: The fuel lines connect all components making up the

propulsion system. To reduce weight, the fuel lines are made of titanium
with stainless steel joints.

Fuel filters: Filters are placed in the fuel lines to prevent particles

from interfering with the function of the latch valves, engine valves and
catalyst beds. Filters are located after each fuel tank and before each

valve. If a particle reaches either an engine valve or a latch valve it

could prevent the valve from closing properly. This would result in fuel
leaking through the seat of the valve,

E-5

Latch valves: Latch valves separate sections of the fuel lines and fuel
tanks. Latch valves are commanded to be in one of two states: open or
closed. Once commanded a latch valve stays in the commanded state until
it is given another command (e.g., if a latch valve is commanded to open
it will remain open until it is commanded to close).

Heaters: Solar heating is intended to be the primary source of heatiung
for HPS., Electrical heaters are provided to the fuel tanks and to the
fuel lines to assure that the hydrazine fuel does not freeze resulting in
damage to the system. Heaters are also provided for the catalyst beds in
order to maintain temperatures that allow the catalyst to act more
efficiently.

Engine valves: The engine valves are located before the catalyst bed of
each thruster. It is through these valves that the firing of the
thrusters is controlled. The engine valve is a solenoid which is
commanded to open. Once commanded the engine valve opens for a short
period of time and then closes. Thus, commanding an engine to maintain
its thrust requires sending a stream of open commands to the engine valve.

Pressure sensors: Pressure sensors are located after each set of fuel
tanks. These pressure guages have an accuracy range of + 1Z.

Catalyst bed: The catalytic agent in the catalyst bed is Iridium (Shell
405). The catalyst bed is fed with hydrazine through a cluster of
capillary tubes connected to the fuel line.

Heat sensors: Heat sensors are located on each fuel tank and after each
latch or engine valve. There is also a heat sensor on each catalyst bed.
The purpose of the sensors on the fuel tanks and valves is to monitor the
temperature of the hydrazine fuel. The temperature sensors on the
catalyst beds allow for monitoring the catalyst bed temperature to assure
that they are operating efficiently. The heat sensors have an accuracy
range of + 2%.

Telemetry data: There are a number of telemetry streams giving information
about the health of the hydrazine system:

o Fuel line pressure data. A numeric value representing the pressure
in the fuel line.

o Latch valve sensor data. A value for each latch valve showing if the
valve is opened or closed.

o Engine valve sensor data. A value for each engine valve showing 1if
the valve is opened or closed.

o Heater temperature gauge data. A numeric value for each sensor which
shows the temperature at that point in the system.

E-6

Catalyst bed temperature data. A numeric value
temperature of a catalyst bed.

Engine valve temperature data. A numeric value
temperature of an engine valve.

Attitude data, Data reflecting the position of
If less or greater than expected, this data may
malfunction in the propulsion system.

E-7

showing the

showing the

the spacecraft,
signal a

III. Faults and Their Workarounds

We will handle hydrazine system failures which correspond to the failure of an
individual system component., Failures in the system must be inferred from
telemetry data received from the spacecraft.

Failures that could occur in a standard hydrazine propulsion system are:

o Leak in the hydrazine storage tank.
o] Leak in a section of the line.

o Failure of a latch valve to open.

o Failure of a latch valve to close.

o Failure of an engine valve to open.
o Failure of an engine valve to close.
o Failure of a heater to turn off.

o Failure of a heater to turn on.

o Failure of a catalyst bed.

Some of the faults listed below have overlapping symptoms. Also, in some
cases it may be impossible to narrow a fault down to a single component. For
example, a clogged filter and a failing catalyst bed can give the same
symptoms.

Faults, symptoms and their workarounds.

FAULT: Leak in the hydrazine fuel tank.
SYMPTOMS : o Loss of pressure in the fuel line.
o Engine thrust results in obtaining less attitude

correction than expected.

o Catalyst bed and engine valve temperatures lower than
expected.

WORKAROUND : Vent the fuel outside the spacecraft by using the thrusters.

The thrusters are used to prevent the fuel from harming the
spacecraft.

E-8

FAULT:

SYMPTOMS :

WORKAROQUND :

FAULT:

SYMPTOMS :

WORKAROUND:

FAULT:

SYMPTOMS :

WORKAROUND :

FAULT:

SYMPTOMS :

Leak in a section of the fuel line.

o Engine thrust results in obtaining less attitude
correction than expected.

o] A lower pressure in the fuel lines than expected,

o A lower pressure in the fuel tanks.

o Catalyst bed and engine valve temperatures less than
expected. -

The workaround is to shut off the part of the system con-
taining the leak., This is done by closing the latch valve,
or latch valves, immediately above the leak.

Failure of the upper-level latch valve to close.

o Engine thrust results in obtaining more attitude cor-
rection than expected (if lower level latch valves are
open).

0o Sensor for the latch valve indicates the valve is open.

o Catalyst bed and engine valve temperatures greater

than expected (if lower-level valves are open).

The workaround is to shut the latch valve immediately above
this latch wvalve. Fuel can be sent through this line with
some risk of causing a pressure spike (or water hammer)
when hydrazine passes through the open valve. A pressure
spike could damage the valve, pressure sensors or fuel tank
bladder membrane.

Failure of the lower-level latch valve to close.
o Sensor for the latch valve indicates the valve is open.

The workaround in this situation is to operate the system
normally as long as the fuel in the region is intact.

Failure of a upper-level or lower-level latch valve to open.

o Engine thrust results in obtaining no attitude cor-
rection or less than expected.

o Sensor for the latch valve indicates the valve 4s
closed.
o Low temperature for the catalyst bed and engine valve.

E-9

WORKAROUND::

FAULT:

SYMPTOMS :

WORKAROUND ¢

FAULT:

SYMPTOMS :

WORKAROUND :

FAULT:

SYMPTOM:

The effect of this fault is to functionally cut off the
section of the system below the stuck valve, If a redun-—
dant fuel line is available it should be used. If a redun-—
dant fuel line is not available this part of the system has
lost its functionality.

Failure of the engine valve to close.

o Engine thrust results in obtaining more attitude than
expected (thrusters will fire as long as there is an
open line to one of the fuel tanks).

o Sensor indicates that the engine valve is open.

o Temperatures for engine valve and catalyst bed higher
than expected.

Shut off the latch valve immediately above the engine valve.
Use a redundant set of thrusters. If a redundant set of
thrusters is not available this set may be used with a
greatly reduced control over the thrust,

Failure of the engine valve to open.

o Engine thrust results in obtaining no attitude cor-
rection or less than expected.

o Sensor for the engine valve indicates the valve is
closed, .
o Low temperature in the catalyst bed and engine wvalve

(i.e., the thruster is not firing).

This fault makes it impossible to use the thrusters
associated with this engine valve. Repeated attempts to
command the valve open may eventually succeed. Otherwise a
redundant set of thrusters must be used.

Failure of fuel-line heater to turn off.

o Heater sensor indicates high temperature.

o Engine thrust results in obtaining less attitude than
expected (if the temperature of the line is great

enough to break the fuel down into hydrogen, nitrogen
and ammonia).

E-10

WORKARQUND:

FAULT:

SYMPTOMS :

WORKAROUND:

FAULT:

SYMPTOM:

WORKAROUND:

o Low temperature in the catalyst bed and engine valve
(this is the result of the thrusters not firing
efficiently due to the breakdown of the fuel).

Do not use this part of the system as long as the tempera—
ture is high enough to break down the hydrazine. TIf the
hydrazine decomposes into its component gases the
efficiency of thruster burns will be reduced because of gas
bubbles in the fuel lines.

Failure of a fuei-line heater to turn on.

o Heater sensor indicates low temperature.

o Engine thrust results in obtaining less attitude and
catalyst bed and engine valve temperature lower than
expected, This loss of thrust is due to hydrazine
freezing in the fuel line and either completely clog-
ging the line or restricting the flow of fuel,

If the line does not freeze, then no workaround is needed.
If the line does freeze, two workarounds are possible: 1)
bathe the spacecraft in the sun to heat the fuel line or 2)
use a redundant part of the system.

Failure of catalyst-bed heater to turn off.

o High catalyst bed temperature.
o High temperature in the engine valve.
o Lowered engine thrust: the result of hydrazine break-

ing down before the engine valve and mixing gas with
the hydrazine fuel.

If the temperature gets too hot then heat could transfer
across the manifold causing the hydrazine fuel to break
into its component gases. This will degrade the
performance of the thruster. The workaround would be to
use a redundant set of thrusters, if they are available.
If the redundant set of thrusters is not available, then
the degraded performance will have to be accepted.

E-11

FAULT: Failure of a catalyst-bed heater to turm on.

SYMPTOMS: o Low catalyst bed temperature.

o Engine valve temperature could be lower than expected
and engine thrust could result in obtaining less atti-
tude than expected. The lower temperature and loss of
thrust is due to hydrazine not igniting as efficiently
as 1t would at a higher temperature.

WORKAROUND ; Two workarounds are possible: 1) bathe the spacecraft in
the sun to heat the catalyst bed or 2) use a redundant part
of the system.

FAULT: Failure of the catalyst bed.
SYMPTOMS : o Attitude change less than expected.
o Low temperature in the catalyst bed (due to lower

reaction rate of the hydrazine).

WORKAROUND : Use redundant set of thrusters, if possible. If a redun-
dant set of thrusters is not available then the reduced
thrust must be accepted as a permanent characteristic of
the system.

Other system failures which could mimic a hydrazine failure: Some symp-
toms of hydrazine failures which could be mimicked by other systems on
spacecraft are:

o Sensor failure (e.g., the sensor could represent a valve as
being closed when in fact it is open).

o On board computer (OBC) malfunction (e.g., the OBC could send
down incorrect telemetry data). (Not an ISEE problem,)

o Gyro failure (results in unexpected attitude change). (Not an
ISEE problem.)

o Wheel driver assembly (result in an unexpected attitude change).
(Not an ISEE problem.)

E-12

IV. System Configuration

The proposed system contains five major modules, as illustrated: an execu-—
tive, 1/0, subsystem model, telemetry gemerator, and fault handler. The con-
ceptual flow through the system is as follows: the I/0 module presents to the
user a menu of options which he uses to specify the type and location of a
fault. For any given test or demonstration the system will be capable of
handling one fault. The executive passes this to the model module, which
adjusts the internal representation of the HPS appropriately. The telemetry
generator then uses this internal representation to produce telemetry which is
passed to the fault handling component. The latter uses its isolation tech-
niques to locate the failure and determines a method of handling it. This
will generally involve changing the state of subsystem components in the
model, e.g., opening and closing latch valves and observing the respounse.
These changes are presented to the user textually and are reflected in
normalized telemetry data. Once identified, the nature of the fault and its
workaround are presented to the user.

Executive: The executive monitors and coordinates the overall flow of
control through the system.

1/0: The I/0 module is responsible for the man-machine interface. It
allows the user to specify the type and location of a fault and displays
this on the screen. As the fault handling module progressively localizes
the failure, the user will be given a description of the isolation process.
Once the fault is located its nature and workaround will be presented to
the user.

Model: The model component maintains an internal representation of the
structure and function of the HPS. It modifies the current status of the
model in accord with the faults specified by the user and the probing
actions and workaround suggestions of the fault handling module,

Telemetry Generator: The telemetry generation module provides simulated
telemetry data to the fault handling component. From its understanding of
how telemetry source points vary under normal and faulty conditions, this
produces telemetry data appropriate to the current state of the HPS, as
indicated by the internal model.

Fault Handling Module: The fault handling module (FHM) detects and
isolates failures based on the telemetry data produced by the telemetry
generator, and identifies workaround strategies. The FHM is the only por-
tion of the system that uses artificial intelligence technology.

Telemetry data is processed by a conventional monitoring and alerting sub-
module for detecting exception events, i.e., faults. The remainder of the
module's processing follows the standard production system format. Indi-
cations of the identified failures are inserted into “working memory”.

The "rule base” encodes a straightforward algorithm that is used for
isolating failures. The workaround emerges as an immediate consequence of
having isolated the fault: there is, in general, a single option.

The process of locating the fault generally involves opening and closing
valves at various points along the hydrazine lines. These changes are
effected in the model, which results in changes in the telemetry data pro-
duced by the telemetry generator., The new telemetry data is fed back to
the FHM which can then assess the consequence of its probing action and
can choose the appropriate part of the algorithm to use next.

As the FHM probes, it progressively eliminates portions of the HPS as

candidates for containing the failure. This reduction in search space can
be presented textually to the user's screen by the I/0 module.

E-14

V. Summary

The purpose of this Satellite Ground Support Expert System contract is to
illustrate some artificial intelligence concepts in the satellite ground sup-
port domain, Fault handling has been identified as an aspect of ground sup—
port which might benefit from automation via AI. A hydrazine propulsion
system has been chosen as the application for fault handling as it appears
sufficient for the above purpose. We will be able to demonstrate some simple
aspects of rule based systems, which will account for 15-20% of the code for
the entire demonstration system. We intend to proceed with the development of
the system for demonstration by November 1984.

E-15

APPENDIX F

Software Design Documentation

SOFTWARE DESIGN DOCUMENTATION - DRAFT

Introduction

Under the Satellite Operations Support Expert System, we are developing a
demonstration system to perform automated fault handling for hydrazine
propulsion systems (HPS). This system consists of six major components: the
executive, the I/0 module, the exposure module, the propulsion system model,
the telemetry generator, and the fault handler. All but the last of
these--the fault handler--are considered supporting software and will be
documented in this report. The fault handler is effectively the knowledge
base of this system, and in accordance with the contract, will be documented
under a separate cover,

System Overview

The overall flow of control through the program is directed by the executive,
After initialization of the program environment, the executive is invoked., It
calls a part of the 1I/0 module which queries the user for a choice of
propulsion system configuration, fault type, and fault location. Choice of
configuration entails identifying or constructing a model of the propulsion
system for internal use by the system. If the user selects the configuration
from ISEE or IUE, the appropriate model is loaded from a file. Otherwise, it
is constructed as the user specifies the components and structure. When the
fault is selected, the system's internal model of the HPS is modified
accordingly for use by the telemetry generator and fault handler.

The executive then calls the exposure module which examines the fault selected
in the context of the configuration and determines what state the propulsion
system should be in to cause the fault to influence its operation. This is a
state in which symptoms will appear in the telemetry stream as abnormal or
unexpected values. The exposure module identifies how the HPS should be
“"commanded” to move into that state and returns a set of command actions to
the executive.

The executive processes these actions by modifying the internal model
appropriately, informing the user of the actions taken, and calling the
telemetry generator. As discussed below, the telemetry generator produces
telemetry to reflect the current state of the HPS. The telemetry is displayed
to the user and examined for unexpected values by a distributed monitoring
system embedded in the telemetry generator. Any unexpected values are
reported to the fault handling module (FHM) both quantitatively (e.g.,
"catalyst bed temperature 850°") and qualitatively (e.g., "catalyst bed
temperature is higher than expected”).

The FHM is a rule-based module which, as mentioned above, will be documented
under separate cover. Briefly, it identifies candidate pathways through the
HPS, on which the fault might lie and searches those pathways, commanding
valves to open and close and thrusters to fire. It draws conclusions about
the location of the fault from the consequences of these actions, i.e., from
the telemetry values produced after the action is effected. Once the fault is
located, the FHM identifies and effects a workaround. Where appropriate,
these actions and their motivations are described to the user.

F-2

When the workaround has been implemented and telemetry has normalized, the
user is given three options:

a) to end the session;

b) to run another demonstration on the same or different configuration
beginning from normal fault-free HPS operation;

c) to run another demonstration on the same configuration, beginning in
its current, "degraded” state-—retaining the original fault and its
workaround and adding a second fault.

In a), the program terminates. In either b) or c¢), once the configuration
and fault are known, the process proceeds as above.

The Executive

The executive is a straightforward controlling program which feeds information
between subordinate modules. It is invoked to coordinate each trial, allowing
for reinitialization between trials as appropriate. It first calls the I/0
module to establish the user's choice of HPS configurations, fault type, and
fault location. It uses the information returned to modify the internal HPS
model. It passes the same information to the exposure module which determines
how to expose the fault, i.e., how to "command the spacecraft” so that
symptoms of the fault will appear in the telemetry. The exposure module
returns a set of command actions which the executive processes by 1) modifying
the model (i.e., changing the state of the HPS); 2) informing the user; and
the 3) calling the telemetry generation module.

After producing and displaying new telemetry values, the telemetry generator
returns a list of unexpected values. The executive sends these to the fault
handling module. At various points, the FHM will send back to the executive
commands to alter the state of the HPS. The executive handles these as it
does the commands from the exposure module: modifying the model, informing
the user, and calling the telemetry generator. New telemetry is produced and
the results cycled back to the fault handler, by the executive. When the
fault has been located and a workaround effected, the executive returns
control to the initializing program,

The Input/Output Module

The 1/0 module provides the means whereby the user interacts with the
demonstration system. There are three primary vehicles for this: menus,
graphics, and textual presentationms.

Menus are used for input to the systems. The configuration-choice menu allows
the user to choose the HPS configuration from ISEE or IUE or to create a new
one. In the latter case, a series of menus allow the user to specify the
number of fuel tanks, latch valves, engine valves, and catalyst beds along
with their structural relationships. ’

F-3

The fault-type menu presents a choice of the different kinds of faults. Based
on the type of fault selected, the fault-location menu presents the choice of
locations for the fault. At the end of a trial, the user will be given a menu
with three options, as discussed above: '

a) to end the demonstration sequence,

b) to begin afresh with an HPS (of whatever configuration) in normal
operation and a new fault, or

c) to continue with the same configuration in its degraded (faulted)
state, with workaround in place, and to select a second fault.

Elementary graphics using the VT100 terminal's "graphics characters” are used
to display the HPS configurations of ISEE and IUE. The pictorial
representation conveys all essential attributes of these configurations,
including temperatures, pressures, and the open/close state of valves.
Numerical telemetry values for components are displayed by the component
location on the screen. It was decided not to use a high functionality
graphics package due to potential difficulties in coordinating its use on the
demonstration computer. Graphics representations for the HPS of ISEE and IUE
are stored in disk files. In the event that the user elects to coastruct a
new configuration, a graphic representation is not constructed. 1In this
event, telemetry will be displayed in tabular form.

When ISEE or IUE configurations are used, textual descriptions and
explanations of system activity will be presented at the bottom of the screen
in a four-line scroll region. Most menus will be displayed in this region
also. For user—created configurations, telemetry will be presented in one
half of the screen with menus and text in the other. This permits the
telemetry and/or graphics to remain unperturbed in the upper region of the
same terminal screen as the text, The alternative of using multiple screens,
i.e., one for graphics and another for menus and text, was deemed too
unwieldly.

The Exposure Module

In actual operation of a propulsion system, it may be some time before a
failed component is used and hence, before the existence of a fault is
realized by the group support personnel. For the purpose of this
demonstration, we have chose to expose the fault quickly, generating

symptomatic evidence which the fault handling component can use for locating
the failure.

The exposure module receives from the executive a description of the
user-specified fault. From the type of fault that is chosen (leak, stuck
valve, etc.,), the exposure module determines what state the spacecraft must be
in to cause symptoms to appear in the telemetry. It might be necessary, for
example, to open a particular latch valve to expose a fuel line leak or to
attempt to fire through a particular thruster when its catalyst bed is
broken. Knowing the current state of the spacecraft, it can then establish
what action or series of actions will put the spacecraft in the desired
state, These can include opening or closing valves, firing a thruster, or in
certain cases, doing nothing at all (the fault could be noticed while the
system is "at rest”). The location of the fault may be checked to determine
exactly where the action should be performed, but in some cases, the site of
the exposure action or actions is independent of the fault location.

There are instances when a fault can be exposed under more than one set of
conditions, and the symptoms displayed by exposing the fault will be different
for each instance. 1In these cases, the exposure module randomly chooses which
of the possible sets of exposure actions to execute. The list of actions to
be performed is then passed back to the executive. The executive "performs”
these actions by making appropriate modifications to the internal model.

Internal Model of the HPS

The system's internal model of the propulsion system is couched in a semantic
network., Major components--valves, tanks, etc.—-—are conceptual nodes, Their
structural relaf?onship is indicated by connectivity links between the nodes,
In addition, each component node has a series of other links indicating
attributes such as its telemetry value(s) and whether the user has specified a
fault for the component. Conceptually, this is also a frame structure where

each major component is represented as a frame with various attribute-value
pairs.

For ISEE and IUE configurations, this model is initialized from disk files to
a fault—-free operating state. For user-configurations, the model is built
incrementally in accord with the user's specifications. In either case, when
the user selects a fault for a particular component, the value of the
fault-state attribute of the frame (node) corresponding to that component is
changed to indicate that fault.

Similarly, commands are made to the HPS by the exposure module and the fault
handler. The commands are actions such as opening and closing valves and
firing thrusters. These actions are effected by changing the value of the
operating-state attributes of the relevant HPS components.

The fault-state attribute along with the connectivity links and the
operating—-state attributes are used by the telemetry generator to produce
telemetry appropriate to the current state of the HPS. New telemetry values
are stored in the appropriate attribute slot in the model.

F-5

The only pieces of information that go from the model to the fault handling
module are the connectivity relations at initialization time and later, at run
time, the telemetry stream from the spacecraft. The FHM has no access to any
fault state information except as reflected in the telemetry values. There
are, conceptually, two internal models--one used by the I/0 module and
telemetry generator (which must know about fault states, etc., to simulate
valid telemetry) and another used by the fault handler. For computational
efficiency, the two are implemented in a single model.

Telemetry Generation

Function. The telemetry generation module serves two purposes in the fault
handling system: 1) it computes telemetry values displayed for the user, and
2) it creates a qualitative difference list for the exposure module as
described below,

There are four types of values representing the state of the hydrazine
propulsion system: 1) telemetry values, 2) expected values, 3) actual values,
and 4) qualitative values. Telemetry values: these are the values which are
normally shown to ground control monitors. These values represent the state
of the system as reported by the sensors aboard the spacecraft (whether these
sensors are functioning properly or not). Expected values: these are values
that would appear in the telemetry stream if all the components making up the
system were functioning normally. Actual values: the actual values represent
the true state of the system. The actual values are only used by the
telemetry generation module. Qualitative values: these are derived from the
telemetry values and the expected values, If the telemetry value for a
component is greater that its expected value, then the qualitative value for
this component is the value +1. However, if the telemetry value is lower than
the expected value for a component, the component is assigned the qualitative
value of -1,

Call structure. The telemetry generator is called by the executive module.
The telemetry generation module is passed a list of commands (HPS components
and commanded states for these components). There may be, for example, a
command to open latch valve three. This command information allows the
telemetry generation module to produce telemetry reflecting the current state
of the HPS,

The telemetry generation module calls the I/0 module which updates the
telemetry displayed for the user. The changed telemetry values presented to
the user reflect changes in the system as a ground station would see them.
Once the I/0 module updates the telemetry values on the user's display, it
returns control to the telemetry generation module.

The telemetry generation module returns a list of qualitative differences to
the executive module. This list of qualitative differences is not the
complete list for the system, but rather the list of telemercry values which
differ from their expected values.

F-6

General algorithm. The high-level algorithm for the telemetry generation
system is given below:

1) Change the state of the components as commanded by the executive
module.

2) Compute the telemetry values.

3) Compute the expected values.

4) Compute the actual values,

5) Construct the qualitative difference list.

6) Call the display routine to update the displayed telemetry values.

Ib) Return control to the executive module.

Generating telemetry. Given a simple hydrazine propulsion system (see figure
below), the telemetry generation module computes telemetry by 1) computing the
telemetry values for the current component, 2) calling routines to compute the
telemetry for lower connected components, and 3) as control returns to the
higher component, propagating the lowest fuel pressure value up the system.
The telemetry values are generated by going depth—-first through the hierarchy
of connected components.

TANK
LVl Lv2 . (latch valves)
EV1 EV2 EV3 A EV4 (engine valves)
CB1 CB2 CB3 CB4 (catalyst-beds)
TH1 TH2 TH3 TH4 (thrusters)

.

For example, the call structure for the components in the above system would
be updated to the values for: 1) TANK, 2) LV1, 3) EV1, 4) CBl, 5) THl1l, 6) EV2,
7) CB2, 8) TH2, 9) Lv2, 10) EV3, 11) CB3, 12) TH3, 13) EV4, 14) CB4, 15) TH4.

Assimptions., A number of assumptions were made in order to model a general
hydrazine propulsion system. These relate to 1) the configuration of the
spacecraft, 2) the enviromment outside the spacecraft, 3) the physical
attributes of the faults. '

The configuration of the spacecraft is an issue which, for the purposes of
generality, we have basically left out of the model. There are a number of
ways in which the architecture of a spacecraft could influence the behavior of
the hydrazine propulsion system. As an example, the distance of the fuel
lines from the outside of the spacecraft and the material on the outside of of
the spacecraft (whether it is reflective or absorbent to light) will influence
how heat dissipates from the fuel lines.,

F-7

The environment is also simplified in the telemetry generation module, The
outside environment is assumed to be 20°F, This prevents the telemetry
generation module from having to know which parts of the spacecraft are in.the
sun and which parts are in the shade. This means that the telemetry
generation module does not have to vary its model of heat dissipation from the
fuel lines.

Certain physical attributes of faults have been simplified. The size of a
leak is considered uniform for all leaks. The differences in fault isolation
for small and large leaks are only in the time it takes for the fault to
become noticeable (unless the leak was so small as to be undetectable).
Another assumption is how the fuel lines and catalyst beds gain and lose
heat. The basic model used for both the fuel lines and catalyst beds is a
linear model of heat loss where the rate of change in temperature is affected
by: 1) whether the temperature has reached one of the extremes in its range,
and 2) whether the heater for the component is on. 1In the case of the fuel
lines, the temperature can vary from 20°F to 80° F (the maximum heat the
heaters can maintain).

Other quantities are derived from the physics of the system. For example, the
volume of escaping fuel and ts effect on the pressure can be computed from a
~form of Bernolli's equation.

APPENDIX G

Knowledge Base Documentation

KNOWLEDGE BASE DOCUMENTATION

Introduction

The fault handler module (FHM) is the part of the expert system
which makes the most use of artificial intelligence techniques. It
interacts with the knowledge representation used by other parts of the
system, reasons about the data it 1s given, requests that certain
actions be performed when it requires additional data, and searches
through pathways in the hydrazine propulsion system (HPS) to isolate
the fault. Once that fault is found, the FHM uses its knowledge about
the effects of various faults and the structure of the HPS to determine
a "workaround”, which is a series of actions designed to minimize or
eliminate any decrease in performance of the HPS. The FHM implemented
in this expert system consists of a knowledge base (sometimes referred
to as a rule base) with various procedures which are used by the
knowledge base.

A knowledge base makes use of several types of knowledge. Some
knowledge is static, such as physical laws or structural relationships.
Other knowledge may be dynamic, such as a temperature, a resource quan-—
tity, and other values which fluctuate with time. The knowledge can be
explicitly stored as a table or list of data, or it can be implicitly

stored in the structure of rules and procedures. The knowledge base of

this FHM utilizes three areas of knowledge:

o Knowledge of the structure of the HPS.
o Knowledge of what symptoms may be produced by a fault.

o Knowledge of how an action should affect the values from a sensor.

Knowledge of the structure of the HPS

This area of knowledge includes information about the number of
each type of component and how the components are connected (i.e.,
which components are directly above and directly below a given compo-
nent). Some basic assumptions are made about the possible configura-
tions for an HPS, based on the structure of ISEE-III, IUE and other
typical systems. These dictate what types of components may be above
and below a specific type of component, and the presence of redundancy
in the system.

The configuration is constrained by the following requirements:

Component type: Component above: Component below:
Tank None LV(s)
Latch valve (LV) Tank(s) or LV(s) LV(s) or EV(s)
Engine valve (EV) IV(s) CB *
Catalyst bed (CB) EV * Thruster *
Thruster |, CB * None

(s) - One or more * -~ Exactly one

(Configuration Constraint Table)

Tanks, latch valves and engine valves are connected by sectioms of
fuel line. These fuel lines contain line heaters, and have several

possibilities for containing fallures:

o Failure of the line heater to turn on, causing the line to freeze
o Fallure of the line heater to shut off, causing the line to overheat

o A leak in the line, causing loss of fuel and pressure.

A fuel line is specified by the components at either end of it. It

is possible for a section of line to have several components at either

end, as shown below:

ULvy

ULV

ULv3

LLVL

LLV2

LLV3

(Part of the IUE hydrazine propulsion system)

LLVH

The line between these upper and lower latch valves is functionally
only one section of line, with the temperature and pressure constant
throughout its length. Any fault within this line will affect all
these latch valves. Each upper latch valve (ULV) has below it the
components (LLV1, LLV2, LLV3, LLV4). Each lower latch valve (LLV) has
above it the components (ULV1l, ULV2, ULV3). The line would be speci-
fied as the section of line between (ULV1l, ULV2, ULV3) and (LLV1i, LLV2,
LLV3, LLV4).

There are also short sectionmns §f fuel line between an engine valve
and its catalyst bed, and between the catalyst bed and its thruster.
The combination of these three components will be referred to as a
thruster set. Each thruster set consists of exactly one engine valve,

one catalyst bed and one thruster.

EV1 EVX EV3

(B4 CB CB3

HTHRUSTERI BTHRuSTsRa ATHKUSTERB

Thruster Set #4 Thruster § o #a Theuster Set #;3

(Part of IUE hydrazine propulsion system)

The expert system does not consider faults for these sections of lines

for two reasomns:

o The fuel line below an engine valve does not require a heater.
o It is impossible to differentiate leaks below an engine valve from

other possible faults (such as a catalyst bed failure).

When considering redundancy, the notion of a tank group is

important. An example of tank groups is shown below:

TanK Group #1 ‘ TankK Group #2
T1 T T3 TY T5 T6 T7 T3

LvL LVa LV3 LV4

(Part of ISEE hydrazine propulsion system)

Even though there are eight separate tanks, there are only two
functional tank groups. Each group has four tanks which are connected
via the same fuel line, and have the same group of components directly
below them. These are (LV1l, LV2) for Tank Group #1 and (LV3, LV4) for
Tank Group #2.

A minimum amount of redundancy with regard to tank groups, latch
valves and thrusters sets is required for workaround purposes. There
must be at least two each of tank groups, latch valves, and thruster
sets for a user-configured HPS. This is the minimum amount of redun-
dancy which allows a chance of successful workaround after the fault
has been isolated.

The knowledge dealing with the structure of the HPS as described
above is maintained explicitly in the internal model of the HPS (see
"Software Design Documentation”, October, 1984 for a description of the
internal model). This knowledge is used by the FHM in both the isola-
tion and workaround stages of the fault handling process. During the
isolation process, the fault handler needs to know the structure of
fuel lines and valves not only to be able to reason about the initial
information it receives when the fault is exposed, but also to be able
to "command” specific valves and thrusters ﬁhen it needs more informa-
tion. Once the fault has been isolated, the workaround procedures use
the structural information to close off parts of the system. This is
necessary to prevent, or at least minimize, any effects from the fault
- in future operation of the system. For example, if a fuel line were
leaking, all valves directly above and below that section of line would

be closed and considered unusable. This may

cause the loss of a set of tanks, a set of thrusters, or a section of

fuel line, which is why redundancy is essential in the configuration of

an HPS.

Knowledge of the symptoms produced by a fault

This is intended to represent the experience which would be accumu-
lated by a human expert in isolating faults. An abnbrmally low
pressure reading, for example, would usually suggest either a fuel leak
or a faulty preésure sensor. This narrows the list of possible faults
considerably. A change in attitude which was different than expected,
however, could be caused by many things. In this case, a human expert
would not be able to deduce much about the fault. The knowledge base
is arranged so that the FHM is able to "deduce" the same things as a
human, given the same information.

Wheﬁ the FHM is first called, the symptoms which resulted from
exposing the fault are made avallable to it by being put into what is
called working memory. After the data representing the symptoms are
put into working memory, they will cause oné or more rules to "fire".
A rule fires when its left hand side (LHS) has been satisfied, which
could be thought of as causing the IF part of an IF-THEN clause to
become true. When the rule fires, its right hand side (RHS), or the
THEN part of an IF-THEN clause, is executed.

The RHS may call procedures which "send" commands to the space~
craft, causing it to change its state and resulting in new data being
put into working memory. Also, the RHS may insert daté directly into
working memory. In either case, the new data may then satisfy the LHS

of other rules, which will cause them to fire. This cycle will

continue until some.goal has been achieved, such as isolating a fault.
One possibility for rules would be:
Rule #1
IF: A catalyst bed sensor reports am abnormal temperature
THEN: Assert catalyst-bed-heater-or-sensor-fault AND
Fire the thruster below that catalyst bed
Rule #2 |
IF: There is catalyst-bed-heater-or-sensor-fault AND
There is unexpected attitude adjustment

THEN: Assert catalyst-bed-heater-fault

If this were part of an expert systenm, sométhing might be placed
in working memory saying there was a symptom of an abnormal temperature
reading from a catalyst bed sensor. ° Rule #1 would then fire and place
in working memory an assertion that there was a catalyst bed heater or
sensor fault, and request that the thruster below the catalyst bed be
fired. If the fault was with the catalyst bed heater as opposed to the
temperature sensor, then the attitude ad justment which resulted from
firing the thruster would be different than expected. Rule #2 would
then fire and assert that there was a catalyst bed heater fault.

The rules in the FHM are written and ordered such that at least
one rule will fire as soon as there are any symptoms, and any rule that
initially fires will cause a significant reduction in the number of
possible faults under consideration. This is possible because each
"class" of faults (such as a fuel leak, stuék valve, broken heater,
etc.) has a symptom or small combination of symptoms that are unique to
that class. By writing rules which look for exactly those symptoms,

initially reducing the fault possibilities becomes straightforward.
&~ 8

Consider the symptom of an abnormally low pressure reading, for
example. There are several faults which could cause this symptom. It
could be a faulty pressure sensor, a fuel line leak, or an engine valve
stuck open. However, in addition to the rule which checks for abnormal
pressure, there is a rule which checks for an engine valve being
stuck. If that rule hasn't fired when the abnormal pressure rule
fires, we know that the fault is not an engine valve stuck open, there-
fore it must be a faulty sensor or line leak.

Precise location of the fault is not as simple as the initial
reduction of possibilities. The fault can sometimes be pinpointed
fairly well by reasoning with the initial symptoms, but other cases may
require various actions to be performed to obtained additional data.
Use of these actions is discussed in the next section.

Knowledge about what symptoms may be produced by a fault is
implicitly stored, as opposed to the explicit storing of the structural
knowledge. This knowledge is imbedded in both the actual rules and in
the firing sequence of the rules. In the actual rules, the knowledge
is used in writing the set of symptoms and other data necessary for the
rule to fire. It is also used in deciding what actions the rule should
request, since actlons are geared to uncovering specific symptoms. In
the firing sequence of the rules, knowledge about the symptoms of a
fault is useful when determining which rule to fire when the same set
of symptoms could cause two or more rules to fire. If a system chose
randomly between two rules'which could fire, it migﬁt choose one that
was only useful when isolating a fault which in this case had been
ruled out. This is important to consider, since firing a rule usually

changes what data is in working memory. Properly using knowledge about

¢ 9

the symptoms of a fault will cause certain rules to fire in a particu-
lar order, analogous to the way in which experts would try out their

hypotheses.,

Knowledge of how an action should affect the readings from a sensor

Knowing the effect an action should have on sensor readings under
both normal and faulty operating conditions corresponds to another type
of knowledge acquired by a human expert. When trying to isolate a
fault, various actipns can be performed to provide additional informa-
tion. The resulting information would be useless unless the expert
knew what the results of each action should be if all affected compo—
nents were functioning properly, and had some idea of what the readings
might be if a suspected component were indeed malfunctioning. This
knowledge in the FHM enables the choosing of an action which will
generate the most useful data for the isolation process.

When designing a rule base, points will be found in a rule
sequence where additional data is necessary for the system to proceed.
At those points, the RHS of a rule will request an action to be per-
formed. Performing the action may cause other symptoms, which would
then fire other rules. The action chosen will be the one most likely
to yield the data needed to proceed in the fault isolation process.

Examples of actions which could be requested by the FHM are the
closing of a latch valve or the firing of a thruster., A latch valve
might be closed‘to check a section of fuel line. 1If a symptom persists
after closing the valve, then the fault which is causing that symptom
lies somewhere between the closed valve and the sensor. If the symptom
does not persist after closing the valve, the fault lies on the other
side of the valve from the sensor.

6~ 10

Firing a thruster is used mainly to determine whether or not the
fault is affecting the attitude adjustmen; of the spacecraft. Nearly
all component failures will affect the attitude adjustment in some
manner, while a faulty sensor will have no effect. Therefore, firing a
thruster isﬂused in nearly every rule sequence to discriminate between
component and sensor failures.

Knowledge about the effect of an action on the readings from a
sensor is, like the knowledge about fault symptoms, implicitly stored.
This knowledge is.embedded mainly in the rulés. As mentioned above,
knowledge about the effects of actions is useful when determining which
action should be performed. Also, knowing what symptoms an action may
uncover is useful when determining what symptoms are required for the
next rule in a sequence.

None of these types of knowledge are totally distinct from each
other., Structural knowledge is used in determining how actions will
affect a sensor reading, and also in determining the symptoms of a
fault. Also, the purpose of understanding the effects of an action is
to interpret the symptoms resulting from an action, so both this knowl-
edge and the knowledge about the symptoms of a particular fault are

taken into account in writing the rules of a system.

Example of FHM isolating fault

Fault: fuel line leak below latch valve #1 (in the ISEE

configuration)

Symptoms: Pressure sensors indicate abnormally low pressure

Rule sequence:
#1 PRESSURE~ABNORMAL rule fires
(Deduction: Fault is fuel leak or faulty pressure sensor)

ACTION: Fire-random-thruster

(Reason: Get more data, causing more rules to fire)

#2 ATTITUDE~ABNORMAL rule fires
(Deduction: Fault affects the attitude adjustment when a

thruster is fired)

#3 FUEL-LEAK rule fires
(Deduction: There is a fuel leak in either a tank or fuel
line)
ACTION: Close-all-valves
(Reason: Help isolate tank or line section containing leak)
ACTION: Open-leftmost-topmost-latch~valve
(Reason: Check section of line immediately below that latch

valve)

#4 PRESSURE-ABNORMAL rule fires
(Deduction: Fault has been found. There 1s a leak in the
fuel line between the latch valve which was
just opéned and the componeﬁt or components
directly below it)
ACTION: Workaround-line~leak-fault
(Reason: Will close off that section of line, system will
work as normal with redundant line and thrusters
used)

G- 12

#5 SYSTEM-WORKAROUND-DONE rule fires

(Deduction:

The FHM is finished with isolation and
workaround of fault. The hydrazine system
should now be functional, relying on redundant

componentry and pathways)

